IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v118y2017icp1370-1379.html
   My bibliography  Save this article

Energy efficiency evaluation in ethylene production process with respect to operation classification

Author

Listed:
  • Gong, Shixin
  • Shao, Cheng
  • Zhu, Li

Abstract

It is significant to increase energy efficiency of ethylene production process for petrochemical enterprise, in terms of the production level and productive benefits. But it is noticed from the actual production data that the energy efficiency of ethylene production has a strong relationship with the complex production conditions. It is necessary to combine the ethylene production states analysis with energy efficiency evaluation and improvement. With regard to the efficiency evaluation methods, data envelopment analysis (DEA) concentrate on a single working condition mode and fails to take into account the complicated working conditions. Therefore, a new energy efficiency evaluation method is presented with respect to operation classification. First, the typical working conditions of the ethylene production are determined corresponding to the key factors, including crude material composition and cracking depth, and the working conditions of production data are classified by k-means clustering algorithm. On the basis of the multiple working conditions, DEA is used to evaluate the performance of decision making units (DMUs) for different working conditions respectively. In addition, the advice on energy new allocation is suggested to the operators. Finally, the accuracy and effectiveness of the proposed method are illustrated by applying in a practical ethylene production.

Suggested Citation

  • Gong, Shixin & Shao, Cheng & Zhu, Li, 2017. "Energy efficiency evaluation in ethylene production process with respect to operation classification," Energy, Elsevier, vol. 118(C), pages 1370-1379.
  • Handle: RePEc:eee:energy:v:118:y:2017:i:c:p:1370-1379
    DOI: 10.1016/j.energy.2016.11.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216316103
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.11.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bi, Gong-Bing & Song, Wen & Zhou, P. & Liang, Liang, 2014. "Does environmental regulation affect energy efficiency in China's thermal power generation? Empirical evidence from a slacks-based DEA model," Energy Policy, Elsevier, vol. 66(C), pages 537-546.
    2. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    3. Song, Chenxi & Li, Mingjia & Wen, Zhexi & He, Ya-Ling & Tao, Wen-Quan & Li, Yangzhe & Wei, Xiangyang & Yin, Xiaolan & Huang, Xing, 2014. "Research on energy efficiency evaluation based on indicators for industry sectors in China," Applied Energy, Elsevier, vol. 134(C), pages 550-562.
    4. Meng, Ming & Shang, Wei & Zhao, Xiaoli & Niu, Dongxiao & Li, Wei, 2015. "Decomposition and forecasting analysis of China's energy efficiency: An application of three-dimensional decomposition and small-sample hybrid models," Energy, Elsevier, vol. 89(C), pages 283-293.
    5. Raymond L. Raab & Richard W. Lichty, 2002. "Identifying Subareas That Comprise A Greater Metropolitan Area: The Criterion of County Relative Efficiency," Journal of Regional Science, Wiley Blackwell, vol. 42(3), pages 579-594, August.
    6. Han, Yongming & Geng, Zhiqiang & Zhu, Qunxiong & Qu, Yixin, 2015. "Energy efficiency analysis method based on fuzzy DEA cross-model for ethylene production systems in chemical industry," Energy, Elsevier, vol. 83(C), pages 685-695.
    7. Wei, Quanling & Yan, Hong, 2004. "Congestion and returns to scale in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 153(3), pages 641-660, March.
    8. Sueyoshi, Toshiyuki & Goto, Mika, 2015. "DEA environmental assessment in time horizon: Radial approach for Malmquist index measurement on petroleum companies," Energy Economics, Elsevier, vol. 51(C), pages 329-345.
    9. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    10. Yingnan Liu & Ke Wang, 2015. "Energy efficiency of China's industry sector: An adjusted network DEA-based decomposition analysis," CEEP-BIT Working Papers 83, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    11. Wang, Zhaohua & Feng, Chao & Zhang, Bin, 2014. "An empirical analysis of China's energy efficiency from both static and dynamic perspectives," Energy, Elsevier, vol. 74(C), pages 322-330.
    12. Liu, Yingnan & Wang, Ke, 2015. "Energy efficiency of China's industry sector: An adjusted network DEA (data envelopment analysis)-based decomposition analysis," Energy, Elsevier, vol. 93(P2), pages 1328-1337.
    13. Sueyoshi, Toshiyuki & Goto, Mika & Sugiyama, Manabu, 2013. "DEA window analysis for environmental assessment in a dynamic time shift: Performance assessment of U.S. coal-fired power plants," Energy Economics, Elsevier, vol. 40(C), pages 845-857.
    14. Wu, Li-Ming & Chen, Bai-Sheng & Bor, Yun-Chang & Wu, Yin-Chin, 2007. "Structure model of energy efficiency indicators and applications," Energy Policy, Elsevier, vol. 35(7), pages 3768-3777, July.
    15. Yang, Siyu & Yang, Qingchun & Qian, Yu, 2013. "A composite efficiency metrics for evaluation of resource and energy utilization," Energy, Elsevier, vol. 61(C), pages 455-462.
    16. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gong, Shixin, 2023. "Multi-scale energy efficiency recognition and diagnosis scheme for ethylene production based on a hierarchical multi-indicator system," Energy, Elsevier, vol. 267(C).
    2. Yu, Kunjie & While, Lyndon & Reynolds, Mark & Wang, Xin & Liang, J.J. & Zhao, Liang & Wang, Zhenlei, 2018. "Multiobjective optimization of ethylene cracking furnace system using self-adaptive multiobjective teaching-learning-based optimization," Energy, Elsevier, vol. 148(C), pages 469-481.
    3. Panjapornpon, Chanin & Bardeeniz, Santi & Hussain, Mohamed Azlan, 2023. "Improving energy efficiency prediction under aberrant measurement using deep compensation networks: A case study of petrochemical process," Energy, Elsevier, vol. 263(PC).
    4. Zhu, Li & Li, Zhe & Chen, Junghui, 2021. "Evaluating and predicting energy efficiency using slow feature partial least squares method for large-scale chemical plants," Energy, Elsevier, vol. 230(C).
    5. Han, Yongming & Wu, Hao & Geng, Zhiqiang & Zhu, Qunxiong & Gu, Xiangbai & Yu, Bin, 2020. "Review: Energy efficiency evaluation of complex petrochemical industries," Energy, Elsevier, vol. 203(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    2. Meng, Fanyi & Su, Bin & Thomson, Elspeth & Zhou, Dequn & Zhou, P., 2016. "Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey," Applied Energy, Elsevier, vol. 183(C), pages 1-21.
    3. Ding, Li-Li & Lei, Liang & Zhao, Xin & Calin, Adrian Cantemir, 2020. "Modelling energy and carbon emission performance: A constrained performance index measure," Energy, Elsevier, vol. 197(C).
    4. Sueyoshi, Toshiyuki & Yuan, Yan, 2017. "Social sustainability measured by intermediate approach for DEA environmental assessment: Chinese regional planning for economic development and pollution prevention," Energy Economics, Elsevier, vol. 66(C), pages 154-166.
    5. Bian, Yiwen & Hu, Miao & Wang, Yousen & Xu, Hao, 2016. "Energy efficiency analysis of the economic system in China during 1986–2012: A parallel slacks-based measure approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 990-998.
    6. Sueyoshi, Toshiyuki & Goto, Mika & Wang, Derek, 2017. "Malmquist index measurement for sustainability enhancement in Chinese municipalities and provinces," Energy Economics, Elsevier, vol. 67(C), pages 554-571.
    7. Tao Xu & Jianxin You & Hui Li & Luning Shao, 2020. "Energy Efficiency Evaluation Based on Data Envelopment Analysis: A Literature Review," Energies, MDPI, vol. 13(14), pages 1-20, July.
    8. Qin, Quande & Li, Xin & Li, Li & Zhen, Wei & Wei, Yi-Ming, 2017. "Air emissions perspective on energy efficiency: An empirical analysis of China’s coastal areas," Applied Energy, Elsevier, vol. 185(P1), pages 604-614.
    9. Geng, ZhiQiang & Dong, JunGen & Han, YongMing & Zhu, QunXiong, 2017. "Energy and environment efficiency analysis based on an improved environment DEA cross-model: Case study of complex chemical processes," Applied Energy, Elsevier, vol. 205(C), pages 465-476.
    10. Abbas Mardani & Dalia Streimikiene & Tomas Balezentis & Muhamad Zameri Mat Saman & Khalil Md Nor & Seyed Meysam Khoshnava, 2018. "Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends," Energies, MDPI, vol. 11(8), pages 1-21, August.
    11. Xiangyu Teng & Fan‐peng Liu & Yung‐ho Chiu, 2020. "The impact of coal and non‐coal consumption on China's energy performance improvement," Natural Resources Forum, Blackwell Publishing, vol. 44(4), pages 334-352, November.
    12. Kai He & Nan Zhu & Wu Jiang & Chuanjin Zhu, 2022. "Efficiency Evaluation of Chinese Provincial Industrial System Based on Network DEA Method," Sustainability, MDPI, vol. 14(9), pages 1-24, April.
    13. Xu, Xin & Cui, Qiang, 2017. "Evaluating airline energy efficiency: An integrated approach with Network Epsilon-based Measure and Network Slacks-based Measure," Energy, Elsevier, vol. 122(C), pages 274-286.
    14. Du, Huibin & Matisoff, Daniel C. & Wang, Yangyang & Liu, Xi, 2016. "Understanding drivers of energy efficiency changes in China," Applied Energy, Elsevier, vol. 184(C), pages 1196-1206.
    15. Sueyoshi, Toshiyuki & Wang, Derek, 2017. "Measuring scale efficiency and returns to scale on large commercial rooftop photovoltaic systems in California," Energy Economics, Elsevier, vol. 65(C), pages 389-398.
    16. Ederer, Nikolaus, 2015. "Evaluating capital and operating cost efficiency of offshore wind farms: A DEA approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1034-1046.
    17. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    18. Zhang, Lin & Zhao, Linlin & Zha, Yong, 2021. "Efficiency evaluation of Chinese regional industrial systems using a dynamic two-stage DEA approach," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    19. Qingyou Yan & Youwei Wan & Jingye Yuan & Jieting Yin & Tomas Baležentis & Dalia Streimikiene, 2017. "Economic and Technical Efficiency of the Biomass Industry in China: A Network Data Envelopment Analysis Model Involving Externalities," Energies, MDPI, vol. 10(9), pages 1-19, September.
    20. Bai-Chen Xie & Jie Gao & Shuang Zhang & ZhongXiang Zhang, 2017. "What Factors Affect the Competiveness of Power Generation Sector in China? An Analysis Based on Game Cross-efficiency," Working Papers 2017.12, Fondazione Eni Enrico Mattei.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:118:y:2017:i:c:p:1370-1379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.