IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v116y2016ip2p1370-1373.html
   My bibliography  Save this article

Efficient enzyme-catalysed transesterification of microalgal biomass from Chlamydomonas sp

Author

Listed:
  • Choong, Wee Pin
  • Tan, Chung Hong
  • Show, Pau Loke
  • Lam, Hon Loong
  • Mohamad Annuar, Mohamad Suffian Bin
  • Juan, Joon Ching
  • Chang, Jo-Shu
  • Ling, Tau Chuan

Abstract

Facing the global issues of dwindling oil reserves and global warming, the search for alternative green energy source has become a priority. Microalgal biofuels has been regarded as a potential sustainable energy source, due to the high oil yield per area of land, ease of culturing microalgae, zero net carbon emission and reduced competition for arable land. In this paper, five different lipid extraction methods were studied using dry biomass of the microalga Chlamydomonas sp. Folch et al. method gave the highest oil yield of 26.27 wt%. The extracted microalgal oil underwent transesterification process using immobilised lipases. The highest conversion achieved was 72.09% in the following optimized conditions: 0.100 g of immobilised enzymes and solvent to methanol volume ratio of 1:1 with tert-butanol as the organic solvent.

Suggested Citation

  • Choong, Wee Pin & Tan, Chung Hong & Show, Pau Loke & Lam, Hon Loong & Mohamad Annuar, Mohamad Suffian Bin & Juan, Joon Ching & Chang, Jo-Shu & Ling, Tau Chuan, 2016. "Efficient enzyme-catalysed transesterification of microalgal biomass from Chlamydomonas sp," Energy, Elsevier, vol. 116(P2), pages 1370-1373.
  • Handle: RePEc:eee:energy:v:116:y:2016:i:p2:p:1370-1373
    DOI: 10.1016/j.energy.2016.06.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216308052
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.06.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, GuanHua & Chen, Feng & Wei, Dong & Zhang, XueWu & Chen, Gu, 2010. "Biodiesel production by microalgal biotechnology," Applied Energy, Elsevier, vol. 87(1), pages 38-46, January.
    2. Brennan, Liam & Owende, Philip, 2010. "Biofuels from microalgae--A review of technologies for production, processing, and extractions of biofuels and co-products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 557-577, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar, Ashok & Gudiukaite, Renata & Gricajeva, Alisa & Sadauskas, Mikas & Malunavicius, Vilius & Kamyab, Hesam & Sharma, Swati & Sharma, Tanvi & Pant, Deepak, 2020. "Microbial lipolytic enzymes – promising energy-efficient biocatalysts in bioremediation," Energy, Elsevier, vol. 192(C).
    2. Lee, Jechan & Choi, Dongho & Kwon, Eilhann E. & Ok, Yong Sik, 2017. "Functional modification of hydrothermal liquefaction products of microalgal biomass using CO2," Energy, Elsevier, vol. 137(C), pages 412-418.
    3. Qiu, Yi & Cheng, Jun & Guo, Hao & Zhang, Ze & Yang, Weijuan & Cen, Kefa, 2019. "Mild hydrothermal treatment on microalgal biomass in batch reactors for lipids hydrolysis and solvent-free extraction to produce biodiesel," Energy, Elsevier, vol. 189(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Behnam Tabatabai & Afua Adusei & Alok Kumar Shrivastava & Prashant Kumar Singh & Viji Sitther, 2020. "Nitrogen Deprivation in Fremyella diplosiphon Augments Lipid Production without Affecting Growth," Energies, MDPI, vol. 13(21), pages 1-12, November.
    2. Nirmala, N. & Dawn, S.S., 2021. "Optimization of Chlorella variabilis. MK039712.1 lipid transesterification using Response Surface Methodology and analytical characterization of biodiesel," Renewable Energy, Elsevier, vol. 179(C), pages 1663-1673.
    3. Maity, Sunil K., 2015. "Opportunities, recent trends and challenges of integrated biorefinery: Part II," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1446-1466.
    4. Venu, Harish & Raju, V. Dhana & Subramani, Lingesan & Appavu, Prabhu, 2020. "Experimental assessment on the regulated and unregulated emissions of DI diesel engine fuelled with Chlorella emersonii methyl ester (CEME)," Renewable Energy, Elsevier, vol. 151(C), pages 88-102.
    5. Amaro, Helena M. & Macedo, Ângela C. & Malcata, F. Xavier, 2012. "Microalgae: An alternative as sustainable source of biofuels?," Energy, Elsevier, vol. 44(1), pages 158-166.
    6. Dariusz Kurczyński & Grzegorz Wcisło & Piotr Łagowski, 2021. "Experimental Study of Fuel Consumption and Exhaust Gas Composition of a Diesel Engine Powered by Biodiesel from Waste of Animal Origin," Energies, MDPI, vol. 14(12), pages 1-22, June.
    7. Alvin B. Culaba & Aristotle T. Ubando & Phoebe Mae L. Ching & Wei-Hsin Chen & Jo-Shu Chang, 2020. "Biofuel from Microalgae: Sustainable Pathways," Sustainability, MDPI, vol. 12(19), pages 1-19, September.
    8. Razzak, Shaikh Abdur & Ali, Saad Aldin M. & Hossain, Mohammad Mozahar & deLasa, Hugo, 2017. "Biological CO2 fixation with production of microalgae in wastewater – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 379-390.
    9. Marwa G. Saad & Noura S. Dosoky & Mohamed S. Zoromba & Hesham M. Shafik, 2019. "Algal Biofuels: Current Status and Key Challenges," Energies, MDPI, vol. 12(10), pages 1-22, May.
    10. Lam, Man Kee & Lee, Keat Teong, 2012. "Potential of using organic fertilizer to cultivate Chlorella vulgaris for biodiesel production," Applied Energy, Elsevier, vol. 94(C), pages 303-308.
    11. Shuba, Eyasu Shumbulo & Kifle, Demeke, 2018. "Microalgae to biofuels: ‘Promising’ alternative and renewable energy, review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 743-755.
    12. Wu, Wei & Wang, Po-Han & Lee, Duu-Jong & Chang, Jo-Shu, 2017. "Global optimization of microalgae-to-biodiesel chains with integrated cogasification combined cycle systems based on greenhouse gas emissions reductions," Applied Energy, Elsevier, vol. 197(C), pages 63-82.
    13. Haonan Zhang & Zhengquan Gao & Zhe Li & Huanmin Du & Bin Lin & Meng Cui & Yonghao Yin & Fengming Lei & Chunyu Yu & Chunxiao Meng, 2017. "Laser Radiation Induces Growth and Lipid Accumulation in the Seawater Microalga Chlorella pacifica," Energies, MDPI, vol. 10(10), pages 1-14, October.
    14. Amaral, Mateus S. & Loures, Carla C.A. & Pedro, Guilherme A. & Reis, Cristiano E.R. & De Castro, Heizir F. & Naves, Fabiano L. & Silva, Messias B. & Prata, Arnaldo M.R., 2020. "An unconventional two-stage cultivation strategy to increase the lipid content and enhance the fatty acid profile on Chlorella minutissima biomass cultivated in a novel internal light integrated photo," Renewable Energy, Elsevier, vol. 156(C), pages 591-601.
    15. Konur, Ozcan, 2011. "The scientometric evaluation of the research on the algae and bio-energy," Applied Energy, Elsevier, vol. 88(10), pages 3532-3540.
    16. Suparmaniam, Uganeeswary & Lam, Man Kee & Uemura, Yoshimitsu & Lim, Jun Wei & Lee, Keat Teong & Shuit, Siew Hoong, 2019. "Insights into the microalgae cultivation technology and harvesting process for biofuel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    17. Taylor, Benjamin & Xiao, Ning & Sikorski, Janusz & Yong, Minloon & Harris, Tom & Helme, Tim & Smallbone, Andrew & Bhave, Amit & Kraft, Markus, 2013. "Techno-economic assessment of carbon-negative algal biodiesel for transport solutions," Applied Energy, Elsevier, vol. 106(C), pages 262-274.
    18. Ahmad, A.L. & Yasin, N.H. Mat & Derek, C.J.C. & Lim, J.K., 2011. "Microalgae as a sustainable energy source for biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 584-593, January.
    19. Muhammad Hanafi Azami & Mark Savill, 2017. "Pulse Detonation Assessment for Alternative Fuels," Energies, MDPI, vol. 10(3), pages 1-19, March.
    20. Giostri, A. & Binotti, M. & Macchi, E., 2016. "Microalgae cofiring in coal power plants: Innovative system layout and energy analysis," Renewable Energy, Elsevier, vol. 95(C), pages 449-464.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:116:y:2016:i:p2:p:1370-1373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.