IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v100y2016icp321-331.html
   My bibliography  Save this article

Biofuel supply chain design from Coffee Cut Stem under environmental analysis

Author

Listed:
  • Duarte, Alexandra
  • Sarache, William
  • Costa, Yasel

Abstract

The fossil fuel consumption is still a global concern that has received great deal of attention from Chemical Engineering and Operation Research fields. In this sense, this paper presents a SCND (Supply Chain Network Design) for second-generation biofuel production. For this aim, we proposed a mathematical model that includes, simultaneously, economic and environmental issues. The model feasibility has been tested in Colombia. In this case study, the bioethanol production from Coffee Cut Stem (Coffee-CS) is examined considering the three main echelons of the supply chain. Experimental results showed that Coffee-CS is a profitable and sustainable feedstock for biofuel production.

Suggested Citation

  • Duarte, Alexandra & Sarache, William & Costa, Yasel, 2016. "Biofuel supply chain design from Coffee Cut Stem under environmental analysis," Energy, Elsevier, vol. 100(C), pages 321-331.
  • Handle: RePEc:eee:energy:v:100:y:2016:i:c:p:321-331
    DOI: 10.1016/j.energy.2016.01.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216001067
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.01.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rincón, Luis E. & Valencia, Monica J. & Hernández, Valentina & Matallana, Luis G. & Cardona, Carlos A., 2015. "Optimization of the Colombian biodiesel supply chain from oil palm crop based on techno-economical and environmental criteria," Energy Economics, Elsevier, vol. 47(C), pages 154-167.
    2. Palak, Gökçe & Ekşioğlu, Sandra Duni & Geunes, Joseph, 2014. "Analyzing the impacts of carbon regulatory mechanisms on supplier and mode selection decisions: An application to a biofuel supply chain," International Journal of Production Economics, Elsevier, vol. 154(C), pages 198-216.
    3. Sundarakani, Balan & de Souza, Robert & Goh, Mark & Wagner, Stephan M. & Manikandan, Sushmera, 2010. "Modeling carbon footprints across the supply chain," International Journal of Production Economics, Elsevier, vol. 128(1), pages 43-50, November.
    4. Lange, Mareike, 2011. "The GHG balance of biofuels taking into account land use change," Energy Policy, Elsevier, vol. 39(5), pages 2373-2385, May.
    5. Chen, Lujie & Olhager, Jan & Tang, Ou, 2014. "Manufacturing facility location and sustainability: A literature review and research agenda," International Journal of Production Economics, Elsevier, vol. 149(C), pages 154-163.
    6. Lam, Hon Loong & Ng, Wendy P.Q. & Ng, Rex T.L. & Ng, Ern Huay & Aziz, Mustafa K. Abdul & Ng, Denny K.S., 2013. "Green strategy for sustainable waste-to-energy supply chain," Energy, Elsevier, vol. 57(C), pages 4-16.
    7. Duarte, Alexandra E. & Sarache, William A. & Costa, Yasel J., 2014. "A facility-location model for biofuel plants: Applications in the Colombian context," Energy, Elsevier, vol. 72(C), pages 476-483.
    8. Čuček, Lidija & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Kravanja, Zdravko, 2012. "Total footprints-based multi-criteria optimisation of regional biomass energy supply chains," Energy, Elsevier, vol. 44(1), pages 135-145.
    9. Tan, Raymond R. & Aviso, Kathleen B. & Barilea, Ivan U. & Culaba, Alvin B. & Cruz, Jose B., 2012. "A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints," Applied Energy, Elsevier, vol. 90(1), pages 154-160.
    10. Dekker, Rommert & Bloemhof, Jacqueline & Mallidis, Ioannis, 2012. "Operations Research for green logistics – An overview of aspects, issues, contributions and challenges," European Journal of Operational Research, Elsevier, vol. 219(3), pages 671-679.
    11. Lange, Mareike, 2011. "The GHG Balance of Biofuels Taking into Account Land Use Change (Power Point)," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114406, European Association of Agricultural Economists.
    12. Havlík, Petr & Schneider, Uwe A. & Schmid, Erwin & Böttcher, Hannes & Fritz, Steffen & Skalský, Rastislav & Aoki, Kentaro & Cara, Stéphane De & Kindermann, Georg & Kraxner, Florian & Leduc, Sylvain & , 2011. "Global land-use implications of first and second generation biofuel targets," Energy Policy, Elsevier, vol. 39(10), pages 5690-5702, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Waltho, Cynthia & Elhedhli, Samir & Gzara, Fatma, 2019. "Green supply chain network design: A review focused on policy adoption and emission quantification," International Journal of Production Economics, Elsevier, vol. 208(C), pages 305-318.
    2. Duarte, Alexandra & Uribe, Juan Carlos & Sarache, William & Calderón, Andrés, 2021. "Economic, environmental, and social assessment of bioethanol production using multiple coffee crop residues," Energy, Elsevier, vol. 216(C).
    3. Barbosa-Póvoa, Ana Paula & da Silva, Cátia & Carvalho, Ana, 2018. "Opportunities and challenges in sustainable supply chain: An operations research perspective," European Journal of Operational Research, Elsevier, vol. 268(2), pages 399-431.
    4. Chávez, Marcela María Morales & Sarache, William & Costa, Yasel, 2018. "Towards a comprehensive model of a biofuel supply chain optimization from coffee crop residues," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 136-162.
    5. Espinoza Pérez, Andrea Teresa & Camargo, Mauricio & Narváez Rincón, Paulo César & Alfaro Marchant, Miguel, 2017. "Key challenges and requirements for sustainable and industrialized biorefinery supply chain design and management: A bibliographic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 350-359.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Hacardiaux & Jean-Sébastien Tancrez, 2020. "Assessing the environmental benefits of horizontal cooperation using a location-inventory model," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(4), pages 1363-1387, December.
    2. Najafi, Fatemeh & Sedaghat, Ahmad & Mostafaeipour, Ali & Issakhov, Alibek, 2021. "Location assessment for producing biodiesel fuel from Jatropha Curcas in Iran," Energy, Elsevier, vol. 236(C).
    3. Zhang, Jianjun & Chen, Yang & Rao, Yongheng & Fu, Meichen & Prishchepov, Alexander V., 2017. "Alternative spatial allocation of suitable land for biofuel production in China," Energy Policy, Elsevier, vol. 110(C), pages 631-643.
    4. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    5. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    6. Espinoza Pérez, Andrea Teresa & Camargo, Mauricio & Narváez Rincón, Paulo César & Alfaro Marchant, Miguel, 2017. "Key challenges and requirements for sustainable and industrialized biorefinery supply chain design and management: A bibliographic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 350-359.
    7. Söder, Mareike, 2014. "EU biofuel policies in practice: A carbon map for the Brazilian Cerrado," Kiel Working Papers 1966, Kiel Institute for the World Economy (IfW Kiel).
    8. Drent, Melvin & Moradi, Poulad & Arts, Joachim, 2023. "Efficient emission reduction through dynamic supply mode selection," European Journal of Operational Research, Elsevier, vol. 311(3), pages 925-941.
    9. Gaigné, C. & Hovelaque, V. & Mechouar, Y., 2020. "Carbon tax and sustainable facility location: The role of production technology," International Journal of Production Economics, Elsevier, vol. 224(C).
    10. Cheng, Chun & Qi, Mingyao & Wang, Xingyi & Zhang, Ying, 2016. "Multi-period inventory routing problem under carbon emission regulations," International Journal of Production Economics, Elsevier, vol. 182(C), pages 263-275.
    11. Lange, Mareike & Suarez, César Freddy, 2013. "EU biofuel policies in practise: A carbon map for the Llanos orientales in Colombia," Kiel Working Papers 1864, Kiel Institute for the World Economy (IfW Kiel).
    12. Bazilian, Morgan & Rogner, Holger & Howells, Mark & Hermann, Sebastian & Arent, Douglas & Gielen, Dolf & Steduto, Pasquale & Mueller, Alexander & Komor, Paul & Tol, Richard S.J. & Yumkella, Kandeh K., 2011. "Considering the energy, water and food nexus: Towards an integrated modelling approach," Energy Policy, Elsevier, vol. 39(12), pages 7896-7906.
    13. Patel, Madhumita & Zhang, Xiaolei & Kumar, Amit, 2016. "Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1486-1499.
    14. Khatiwada, Dilip & Seabra, Joaquim & Silveira, Semida & Walter, Arnaldo, 2012. "Accounting greenhouse gas emissions in the lifecycle of Brazilian sugarcane bioethanol: Methodological references in European and American regulations," Energy Policy, Elsevier, vol. 47(C), pages 384-397.
    15. Y Bouchery & Asma Ghaffari & Zied Jemai & Jan C Fransoo, 2016. "Sustainable transportation and order quantity: insights from multiobjective optimization," Post-Print hal-01954465, HAL.
    16. Andreas Meyer-Aurich & Yulia Lochmann & Hilde Klauss & Annette Prochnow, 2016. "Comparative Advantage of Maize- and Grass-Silage Based Feedstock for Biogas Production with Respect to Greenhouse Gas Mitigation," Sustainability, MDPI, vol. 8(7), pages 1-14, June.
    17. Barbosa-Póvoa, Ana Paula & da Silva, Cátia & Carvalho, Ana, 2018. "Opportunities and challenges in sustainable supply chain: An operations research perspective," European Journal of Operational Research, Elsevier, vol. 268(2), pages 399-431.
    18. Gonzalez-Salazar, Miguel Angel & Venturini, Mauro & Poganietz, Witold-Roger & Finkenrath, Matthias & L.V. Leal, Manoel Regis, 2017. "Combining an accelerated deployment of bioenergy and land use strategies: Review and insights for a post-conflict scenario in Colombia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 159-177.
    19. Boucher, Philip, 2012. "The role of controversy, regulation and engineering in UK biofuel development," Energy Policy, Elsevier, vol. 42(C), pages 148-154.
    20. Palak, Gökçe & Ekşioğlu, Sandra Duni & Geunes, Joseph, 2014. "Analyzing the impacts of carbon regulatory mechanisms on supplier and mode selection decisions: An application to a biofuel supply chain," International Journal of Production Economics, Elsevier, vol. 154(C), pages 198-216.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:100:y:2016:i:c:p:321-331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.