IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v68y2014icp591-602.html
   My bibliography  Save this article

Remaking the UK's energy technology innovation system: From the margins to the mainstream

Author

Listed:
  • Winskel, Mark
  • Radcliffe, Jonathan
  • Skea, Jim
  • Wang, Xinxin

Abstract

The UK energy technology innovation system (ETIS) has undergone wholesale remaking in recent years, in terms of its aims, funding and organisation. We analyse this process and distinguish between three phases since 2000: new beginnings, momentum building and urgency and review. Within an international trend to ETIS rebuilding, UK experience has been distinctive: from a low starting base in the early-2000s, to system remaking under a strong decarbonisation policy imperative in the late-2000s, to multiple and contested drivers in the early-2010s. Public funding levels have been erratic, with a rapid increase and a more recent decline. The private business sector has played a leading role in this remaking, and as this influence has grown, the role and style of energy innovation has shifted from long term niches to the shorter term mainstream. The UK ETIS suffers from persistent problems: fragmentation, low transparency and weak links to the research evidence base.

Suggested Citation

  • Winskel, Mark & Radcliffe, Jonathan & Skea, Jim & Wang, Xinxin, 2014. "Remaking the UK's energy technology innovation system: From the margins to the mainstream," Energy Policy, Elsevier, vol. 68(C), pages 591-602.
  • Handle: RePEc:eee:enepol:v:68:y:2014:i:c:p:591-602
    DOI: 10.1016/j.enpol.2014.01.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421514000147
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2014.01.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Unruh, Gregory C. & Carrillo-Hermosilla, Javier, 2006. "Globalizing carbon lock-in," Energy Policy, Elsevier, vol. 34(10), pages 1185-1197, July.
    2. Unruh, Gregory C., 2002. "Escaping carbon lock-in," Energy Policy, Elsevier, vol. 30(4), pages 317-325, March.
    3. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801, October.
    4. Bergek, Anna & Berggren, Christian & Magnusson, Thomas & Hobday, Michael, 2013. "Technological discontinuities and the challenge for incumbent firms: Destruction, disruption or creative accumulation?," Research Policy, Elsevier, vol. 42(6), pages 1210-1224.
    5. Mitchell, Catherine & Connor, Peter, 2004. "Renewable energy policy in the UK 1990-2003," Energy Policy, Elsevier, vol. 32(17), pages 1935-1947, November.
    6. Kern, Florian, 2012. "Using the multi-level perspective on socio-technical transitions to assess innovation policy," Technological Forecasting and Social Change, Elsevier, vol. 79(2), pages 298-310.
    7. Carlsson, B & Stankiewicz, R, 1991. "On the Nature, Function and Composition of Technological Systems," Journal of Evolutionary Economics, Springer, vol. 1(2), pages 93-118, April.
    8. Foray, D. & Mowery, D.C. & Nelson, R.R., 2012. "Public R&D and social challenges: What lessons from mission R&D programs?," Research Policy, Elsevier, vol. 41(10), pages 1697-1702.
    9. Sagar, A. D. & Holdren, J. P., 2002. "Assessing the global energy innovation system: some key issues," Energy Policy, Elsevier, vol. 30(6), pages 465-469, May.
    10. Richard G. Newell, 2011. "The Energy Innovation System: A Historical Perspective," NBER Chapters, in: Accelerating Energy Innovation: Insights from Multiple Sectors, pages 25-47, National Bureau of Economic Research, Inc.
    11. Mark Winskel & Andrew McLeod & Robin Wallace & Robin Williams, 2006. "Energy policy and institutional context: Marine energy innovation systems," Science and Public Policy, Oxford University Press, vol. 33(5), pages 365-376, June.
    12. Henderson, Rebecca M. & Newell, Richard G. (ed.), 2011. "Accelerating Energy Innovation," National Bureau of Economic Research Books, University of Chicago Press, number 9780226326832.
    13. Hargadon, Andrew, 2010. "Technology policy and global warming: Why new innovation models are needed," Research Policy, Elsevier, vol. 39(8), pages 1024-1026, October.
    14. Mowery, David C. & Nelson, Richard R. & Martin, Ben R., 2010. "Technology policy and global warming: Why new policy models are needed (or why putting new wine in old bottles won't work)," Research Policy, Elsevier, vol. 39(8), pages 1011-1023, October.
    15. Perrow, Charles, 2010. "Comment on Mowery, Nelson and Martin," Research Policy, Elsevier, vol. 39(8), pages 1030-1031, October.
    16. Helm, Dieter, 2003. "Energy, the State, and the Market: British Energy Policy since 1979," OUP Catalogue, Oxford University Press, number 9780199262038.
    17. Rebecca M. Henderson & Richard G. Newell, 2011. "Introduction and Summary to "Accelerating Energy Innovation: Insights from Multiple Sectors"," NBER Chapters, in: Accelerating Energy Innovation: Insights from Multiple Sectors, pages 1-23, National Bureau of Economic Research, Inc.
    18. Rebecca M. Henderson & Richard G. Newell, 2011. "Accelerating Energy Innovation: Insights from Multiple Sectors," NBER Books, National Bureau of Economic Research, Inc, number hend09-1.
    19. Robert W. Fri, 2003. "The Role of Knowledge: Technological Innovation in the Energy System," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 51-74.
    20. Gross, Robert, 2004. "Technologies and innovation for system change in the UK: status, prospects and system requirements of some leading renewable energy options," Energy Policy, Elsevier, vol. 32(17), pages 1905-1919, November.
    21. Mihaela ȘTEȚ, 2013. "Financial Implications Of Technological Progress," SEA - Practical Application of Science, Romanian Foundation for Business Intelligence, Editorial Department, issue 1, pages 192-199, June.
    22. repec:cmj:journl:y:2013:i:27:stetm is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andersson, Johnn & Perez Vico, Eugenia & Hammar, Linus & Sandén, Björn A., 2017. "The critical role of informed political direction for advancing technology: The case of Swedish marine energy," Energy Policy, Elsevier, vol. 101(C), pages 52-64.
    2. Su, Chi Wei & Liu, Fangying & Stefea, Petru & Umar, Muhammad, 2023. "Does technology innovation help to achieve carbon neutrality?," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 1-14.
    3. Xiangsheng Dou, 2017. "Low Carbon Technology Innovation, Carbon Emissions Trading and Relevant Policy Support for China s Low Carbon Economy Development," International Journal of Energy Economics and Policy, Econjournals, vol. 7(2), pages 172-184.
    4. Child, Michael & Breyer, Christian, 2017. "Transition and transformation: A review of the concept of change in the progress towards future sustainable energy systems," Energy Policy, Elsevier, vol. 107(C), pages 11-26.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Wei & Zhang, ZhongXiang, "undated". "Product Homogeneity, Knowledge Spillovers, and Innovation: Why Energy Sector is Perplexed by a Slow Pace of Technological Progress," Working Papers 249504, Australian National University, Centre for Climate Economics & Policy.
    2. Wei Jin & ZhongXiang Zhang, 2017. "The tragedy of product homogeneity and knowledge non-spillovers: explaining the slow pace of energy technological progress," Annals of Operations Research, Springer, vol. 255(1), pages 639-661, August.
    3. Wei Jin & ZhongXiang Zhang, 2015. "Levelling the Playing Field: On the Missing Role of Network Externality in Designing Renewable Energy Technology Deployment Policies," Working Papers 2015.76, Fondazione Eni Enrico Mattei.
    4. Luís M A Bettencourt & Jessika E Trancik & Jasleen Kaur, 2013. "Determinants of the Pace of Global Innovation in Energy Technologies," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-6, October.
    5. Robert K. Perrons & Adam B. Jaffe & Trinh Le, 2020. "Tracing the Linkages Between Scientific Research and Energy Innovations: A Comparison of Clean and Dirty Technologies," NBER Working Papers 27777, National Bureau of Economic Research, Inc.
    6. Jordaan, Sarah M. & Romo-Rabago, Elizabeth & McLeary, Romaine & Reidy, Luke & Nazari, Jamal & Herremans, Irene M., 2017. "The role of energy technology innovation in reducing greenhouse gas emissions: A case study of Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1397-1409.
    7. Wei Jin & ZhongXiang Zhang, 2014. "Explaining the Slow Pace of Energy Technological Innovation: Why Market Conditions Matter," CCEP Working Papers 1401, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
    8. Sinha, Avik & Balsalobre-Lorente, Daniel & Zafar, Wasif & Saleem, Muhammad Mansoor, 2021. "Analyzing Global Inequality in Access to Energy: Developing Policy Framework by Inequality Decomposition," MPRA Paper 111061, University Library of Munich, Germany, revised 2021.
    9. Auke Hoekstra & Maarten Steinbuch & Geert Verbong, 2017. "Creating Agent-Based Energy Transition Management Models That Can Uncover Profitable Pathways to Climate Change Mitigation," Complexity, Hindawi, vol. 2017, pages 1-23, December.
    10. Francesco Vona & Giovanni Marin & Davide Consoli, 2019. "Measures, drivers and effects of green employment: evidence from US local labor markets, 2006–2014," Journal of Economic Geography, Oxford University Press, vol. 19(5), pages 1021-1048.
    11. Jong-Hyun Kim & Yong-Gil Lee, 2021. "Factors of Collaboration Affecting the Performance of Alternative Energy Patents in South Korea from 2010 to 2017," Sustainability, MDPI, vol. 13(18), pages 1-25, September.
    12. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    13. repec:hal:spmain:info:hdl:2441/f6h8764enu2lskk9p4oq2cqb0 is not listed on IDEAS
    14. Fagerberg, Jan, 2018. "Mobilizing innovation for sustainability transitions: A comment on transformative innovation policy," Research Policy, Elsevier, vol. 47(9), pages 1568-1576.
    15. Nesta, Lionel & Vona, Francesco & Nicolli, Francesco, 2014. "Environmental policies, competition and innovation in renewable energy," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 396-411.
    16. Costa-Campi, M.T. & Duch-Brown, N. & García-Quevedo, J., 2014. "R&D drivers and obstacles to innovation in the energy industry," Energy Economics, Elsevier, vol. 46(C), pages 20-30.
    17. Anadón, Laura Díaz, 2012. "Missions-oriented RD&D institutions in energy between 2000 and 2010: A comparative analysis of China, the United Kingdom, and the United States," Research Policy, Elsevier, vol. 41(10), pages 1742-1756.
    18. Negro, Simona O. & Hekkert, Marko P. & Smits, Ruud E., 2007. "Explaining the failure of the Dutch innovation system for biomass digestion--A functional analysis," Energy Policy, Elsevier, vol. 35(2), pages 925-938, February.
    19. Olabanji Oni, 2017. "Determinants of Venture Capital Supply in Sub-Saharan Africa," Journal of Economics and Behavioral Studies, AMH International, vol. 9(4), pages 87-97.
    20. Foxon, Timothy J., 2011. "A coevolutionary framework for analysing a transition to a sustainable low carbon economy," Ecological Economics, Elsevier, vol. 70(12), pages 2258-2267.
    21. Aktoty Aitzhanova & Shigeo Katsu & Johannes F. Linn & Vladislav Yezhov (ed.), 2014. "Kazakhstan 2050: Toward a Modern Society for All," Books, Emerging Markets Forum, edition 1, number kazakh2050, May.

    More about this item

    Keywords

    Energy; Technology; Innovation;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:68:y:2014:i:c:p:591-602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.