IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v57y2013icp347-354.html
   My bibliography  Save this article

A cost-benefit analysis of generating electricity from biomass

Author

Listed:
  • O’Mahoney, Amy
  • Thorne, Fiona
  • Denny, Eleanor

Abstract

A key challenge internationally is the design of future electricity systems which will bring about emissions savings and fuel security at least cost. Peat is used to generate electricity in several EU countries, mainly to take advantage of indigenous resources and increase fuel mix diversity. The Irish government has introduced a target of 30% cofiring of peat and biomass by 2015. This paper assesses the feasibility of achieving this target by calculating the available indigenous biomass resource capable of being cofired; the cost of meeting the target; the benefits in terms of carbon abatement; and finally the present value in economic terms of meeting the target. Results demonstrate that Ireland has only half the necessary resource to meet the 30% target and that the net cost of doing so is greater than the cost of what is currently being paid for peat, in all of the scenarios considered. Thus, it is concluded that while it may be technically possible to meet the target by combining national resources with imported biomass this is never the least cost option, and as a result the targeted focus of Government policy may need to be reconsidered.

Suggested Citation

  • O’Mahoney, Amy & Thorne, Fiona & Denny, Eleanor, 2013. "A cost-benefit analysis of generating electricity from biomass," Energy Policy, Elsevier, vol. 57(C), pages 347-354.
  • Handle: RePEc:eee:enepol:v:57:y:2013:i:c:p:347-354
    DOI: 10.1016/j.enpol.2013.02.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421513000906
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2013.02.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Verbong, Geert & Geels, Frank, 2007. "The ongoing energy transition: Lessons from a socio-technical, multi-level analysis of the Dutch electricity system (1960-2004)," Energy Policy, Elsevier, vol. 35(2), pages 1025-1037, February.
    2. Malaguzzi Valeri, Laura, 2009. "Welfare and competition effects of electricity interconnection between Ireland and Great Britain," Energy Policy, Elsevier, vol. 37(11), pages 4679-4688, November.
    3. O'Mahoney, Amy & Denny, Eleanor, 2013. "Electricity prices and generator behaviour in gross pool electricity markets," Energy Policy, Elsevier, vol. 63(C), pages 628-637.
    4. Schilstra, Anne Jelle, 2001. "How sustainable is the use of peat for commercial energy production?," Ecological Economics, Elsevier, vol. 39(2), pages 285-293, November.
    5. Laurikka, Harri & Koljonen, Tiina, 2006. "Emissions trading and investment decisions in the power sector--a case study in Finland," Energy Policy, Elsevier, vol. 34(9), pages 1063-1074, June.
    6. Styles, David & Jones, Michael B., 2007. "Current and future financial competitiveness of electricity and heat from energy crops: A case study from Ireland," Energy Policy, Elsevier, vol. 35(8), pages 4355-4367, August.
    7. Ericsson, Karin & Huttunen, Suvi & Nilsson, L.J.Lars J. & Svenningsson, Per, 2004. "Bioenergy policy and market development in Finland and Sweden," Energy Policy, Elsevier, vol. 32(15), pages 1707-1721, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Pang, Mingyue, 2015. "Biomass direct-fired power generation system in China: An integrated energy, GHG emissions, and economic evaluation for Salix," Energy Policy, Elsevier, vol. 84(C), pages 155-165.
    2. McGrath, Luke & Hynes, Stephen & McHale, John, 2019. "Augmenting the World Bank's estimates: Ireland's genuine savings through boom and bust," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.
    3. Collins Okello & Stefania Pindozzi & Salvatore Faugno & Lorenzo Boccia, 2014. "Appraising Bioenergy Alternatives in Uganda Using Strengths, Weaknesses, Opportunities and Threats (SWOT)-Analytical Hierarchy Process (AHP) and a Desirability Functions Approach," Energies, MDPI, vol. 7(3), pages 1-22, February.
    4. Lee, Amy H.I. & Chen, Hsing Hung & Chen, Jack, 2017. "Building smart grid to power the next century in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 126-135.
    5. Chugh, Shikha & Yu, T. Edward & Jackson, Samuel & Larson, James & English, Burton & Cho, Seong-Hoon, 2015. "Exploring the Potential to Penetrate the Energy Markets for Tennessee-Produced Switchgrass," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 196899, Southern Agricultural Economics Association.
    6. Choi, Gobong & Huh, Sung-Yoon & Heo, Eunnyeong & Lee, Chul-Yong, 2018. "Prices versus quantities: Comparing economic efficiency of feed-in tariff and renewable portfolio standard in promoting renewable electricity generation," Energy Policy, Elsevier, vol. 113(C), pages 239-248.
    7. Denny, Eleanor & O'Mahoney, Amy & Lannoye, Eamonn, 2017. "Modelling the impact of wind generation on electricity market prices in Ireland: An econometric versus unit commitment approach," Renewable Energy, Elsevier, vol. 104(C), pages 109-119.
    8. Gobong Choi & Eunnyeong Heo & Chul-Yong Lee, 2018. "Dynamic Economic Analysis of Subsidies for New and Renewable Energy in South Korea," Sustainability, MDPI, vol. 10(6), pages 1-19, June.
    9. Lynch, Muireann A, 2017. "Re-evaluating Irish energy policy in light of brexit," Research Notes RN20170201, Economic and Social Research Institute (ESRI).
    10. Maria G. Savvidou & Pavlos K. Pandis & Diomi Mamma & Georgia Sourkouni & Christos Argirusis, 2022. "Organic Waste Substrates for Bioenergy Production via Microbial Fuel Cells: A Key Point Review," Energies, MDPI, vol. 15(15), pages 1-53, August.
    11. McQuinn, Kieran & Foley, Daniel & O'Toole, Conor, 2017. "Quarterly Economic Commentary, Summer 2017," Forecasting Report, Economic and Social Research Institute (ESRI), number QEC20172.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muireann Á. Lynch & Richard Tol & Mark J. O’Malley, 2014. "Minimising costs and variability of electricity generation by means of optimal electricity interconnection utilisation," Working Paper Series 6814, Department of Economics, University of Sussex Business School.
    2. Adrian Neacșa & Mirela Panait & Jianu Daniel Mureșan & Marian Catalin Voica & Otilia Manta, 2022. "The Energy Transition between Desideratum and Challenge: Are Cogeneration and Trigeneration the Best Solution?," IJERPH, MDPI, vol. 19(5), pages 1-22, March.
    3. Hultman, Nathan E. & Malone, Elizabeth L. & Runci, Paul & Carlock, Gregory & Anderson, Kate L., 2012. "Factors in low-carbon energy transformations: Comparing nuclear and bioenergy in Brazil, Sweden, and the United States," Energy Policy, Elsevier, vol. 40(C), pages 131-146.
    4. Lynch, Muireann Á. & Longoria, Genora & Curtis, John, 2021. "Future market design options for electricity markets with high RES-E: lessons from the Irish Single Electricity Market," Papers WP702, Economic and Social Research Institute (ESRI).
    5. Lynch, Muireann & Longoria, Genaro & Curtis, John, 2021. "Market design options for electricity markets with high variable renewable generation," Utilities Policy, Elsevier, vol. 73(C).
    6. Gallaher, Adam & Graziano, Marcello & Fiaschetti, Maurizio, 2021. "Legacy and shockwaves: A spatial analysis of strengthening resilience of the power grid in Connecticut," Energy Policy, Elsevier, vol. 159(C).
    7. Schreiner, Lena & Madlener, Reinhard, 2022. "Investing in power grid infrastructure as a flexibility option: A DSGE assessment for Germany," Energy Economics, Elsevier, vol. 107(C).
    8. Caragliu, Andrea & Graziano, Marcello, 2022. "The spatial dimension of energy transition policies, practices and technologies," Energy Policy, Elsevier, vol. 168(C).
    9. Klingelhöfer, Heinz Eckart, 2009. "Investments in EOP-technologies and emissions trading - Results from a linear programming approach and sensitivity analysis," European Journal of Operational Research, Elsevier, vol. 196(1), pages 370-383, July.
    10. Taghizadeh-Hesary, Farhad & Rasoulinezhad, Ehsan & Shahbaz, Muhammad & Vinh Vo, Xuan, 2021. "How energy transition and power consumption are related in Asian economies with different income levels?," Energy, Elsevier, vol. 237(C).
    11. Barbanente, Angela & Grassini, Laura, 2022. "Fostering transitions in landscape policies: A multi-level perspective," Land Use Policy, Elsevier, vol. 112(C).
    12. Bongsuk Sung & Myung-Bae Yeom & Hong-Gi Kim, 2017. "Eco-Efficiency of Government Policy and Exports in the Bioenergy Technology Market," Sustainability, MDPI, vol. 9(9), pages 1-18, September.
    13. Alessandro Grimaldi & Antonio Lopolito & Massimo Monteleone & Piergiuseppe Morone & Maurizio Prosperi, 2009. "Wp 6: Modelling Stakeholder Interplay And Policy Scenarios For Biorefinery And Biodiesel Production," Quaderni DSEMS 02-2009, Dipartimento di Scienze Economiche, Matematiche e Statistiche, Universita' di Foggia.
    14. Frank, Alejandro Germán & Gerstlberger, Wolfgang & Paslauski, Carolline Amaral & Lerman, Laura Visintainer & Ayala, Néstor Fabián, 2018. "The contribution of innovation policy criteria to the development of local renewable energy systems," Energy Policy, Elsevier, vol. 115(C), pages 353-365.
    15. Radtke, Jörg & Scherhaufer, Patrick, 2022. "A social science perspective on conflicts in the energy transition: An introduction to the special issue," Utilities Policy, Elsevier, vol. 78(C).
    16. Hölsgens, Rick, 2019. "Resource dependence and energy risks in the Netherlands since the mid-nineteenth century," Energy Policy, Elsevier, vol. 125(C), pages 45-54.
    17. Vyn, Richard J. & Virani, Tasneem & Deen, Bill, 2012. "Examining the economic feasibility of miscanthus in Ontario: An application to the greenhouse industry," Energy Policy, Elsevier, vol. 50(C), pages 669-676.
    18. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Homes of the future: Unpacking public perceptions to power the domestic hydrogen transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    19. Geels, Frank W., 2012. "A socio-technical analysis of low-carbon transitions: introducing the multi-level perspective into transport studies," Journal of Transport Geography, Elsevier, vol. 24(C), pages 471-482.
    20. Julia Maria Wittmayer & Tessa de Geus & Bonno Pel & F. Avelino & Sabine Hielscher & Thomas Hoppe & Marie Susan Mühlemeier & Agata Stasik & Sem Oxenaar & Karoline K.S. Rogge & Vivian Visser & Esther Ma, 2020. "Beyond instrumentalism: Broadening the understanding of social innovation in socio-technical energy systems," ULB Institutional Repository 2013/312323, ULB -- Universite Libre de Bruxelles.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:57:y:2013:i:c:p:347-354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.