IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v46y2012icp399-416.html
   My bibliography  Save this article

Effects of aggregating electric load in the United States

Author

Listed:
  • Corcoran, Bethany A.
  • Jenkins, Nick
  • Jacobson, Mark Z.

Abstract

This study quantifies the effects of aggregating electric load over various combinations (Aggregation Groupings) of the 10 Federal Energy Regulatory Commission (FERC) regions in the contiguous U.S. Generator capacity capital cost savings, load energy shift operating cost savings, reserve requirement cost savings, and transmission costs due to aggregation were calculated for each Aggregation Grouping. Eight scenarios of Aggregation Groupings over the U.S. were formed to estimate overall system cost. Transmission costs outweighed cost savings due to aggregation for all scenarios and nearly all Aggregation Groupings. East–west transmission layouts had the highest overall cost, and interconnecting ERCOT to adjacent FERC Regions resulted in increased costs, both due to limited existing transmission capacity. This study found little economic benefit of aggregating electric load alone (e.g., without aggregating renewable generators simultaneously), except in the West and Northwest U.S. If aggregation of load alone is desired, small, regional consolidations yield the lowest overall cost. This study neither examines nor precludes benefits of interconnecting geographically-dispersed renewable generators with load. It also does not consider effects from sub-hourly load variability, fuel diversity and price uncertainty, energy price differences due to congestion, or uncertainty due to forecasting errors; thus, results are valid only for the assumptions made.

Suggested Citation

  • Corcoran, Bethany A. & Jenkins, Nick & Jacobson, Mark Z., 2012. "Effects of aggregating electric load in the United States," Energy Policy, Elsevier, vol. 46(C), pages 399-416.
  • Handle: RePEc:eee:enepol:v:46:y:2012:i:c:p:399-416
    DOI: 10.1016/j.enpol.2012.03.079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512002844
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.03.079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Delucchi, Mark A. & Jacobson, Mark Z., 2011. "Providing all global energy with wind, water, and solar power, Part II: Reliability, system and transmission costs, and policies," Energy Policy, Elsevier, vol. 39(3), pages 1170-1190, March.
    2. Sinden, Graham, 2007. "Characteristics of the UK wind resource: Long-term patterns and relationship to electricity demand," Energy Policy, Elsevier, vol. 35(1), pages 112-127, January.
    3. Kirby, Brendan & Milligan, Michael, 2008. "Facilitating Wind Development: The Importance of Electric Industry Structure," The Electricity Journal, Elsevier, vol. 21(3), pages 40-54, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frew, Bethany A. & Jacobson, Mark Z., 2016. "Temporal and spatial tradeoffs in power system modeling with assumptions about storage: An application of the POWER model," Energy, Elsevier, vol. 117(P1), pages 198-213.
    2. Karl-Kiên Cao & Kai von Krbek & Manuel Wetzel & Felix Cebulla & Sebastian Schreck, 2019. "Classification and Evaluation of Concepts for Improving the Performance of Applied Energy System Optimization Models," Energies, MDPI, vol. 12(24), pages 1-51, December.
    3. Becker, Sarah & Frew, Bethany A. & Andresen, Gorm B. & Zeyer, Timo & Schramm, Stefan & Greiner, Martin & Jacobson, Mark Z., 2014. "Features of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions," Energy, Elsevier, vol. 72(C), pages 443-458.
    4. Rodríguez, Rolando A. & Becker, Sarah & Andresen, Gorm B. & Heide, Dominik & Greiner, Martin, 2014. "Transmission needs across a fully renewable European power system," Renewable Energy, Elsevier, vol. 63(C), pages 467-476.
    5. Becker, Sarah & Frew, Bethany A. & Andresen, Gorm B. & Jacobson, Mark Z. & Schramm, Stefan & Greiner, Martin, 2015. "Renewable build-up pathways for the US: Generation costs are not system costs," Energy, Elsevier, vol. 81(C), pages 437-445.
    6. Jafari-Marandi, Ruholla & Hu, Mengqi & Omitaomu, OluFemi A., 2016. "A distributed decision framework for building clusters with different heterogeneity settings," Applied Energy, Elsevier, vol. 165(C), pages 393-404.
    7. Deason, Wesley, 2018. "Comparison of 100% renewable energy system scenarios with a focus on flexibility and cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3168-3178.
    8. Frew, Bethany A. & Becker, Sarah & Dvorak, Michael J. & Andresen, Gorm B. & Jacobson, Mark Z., 2016. "Flexibility mechanisms and pathways to a highly renewable US electricity future," Energy, Elsevier, vol. 101(C), pages 65-78.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Becker, Sarah & Frew, Bethany A. & Andresen, Gorm B. & Zeyer, Timo & Schramm, Stefan & Greiner, Martin & Jacobson, Mark Z., 2014. "Features of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions," Energy, Elsevier, vol. 72(C), pages 443-458.
    2. Becker, Sarah & Frew, Bethany A. & Andresen, Gorm B. & Jacobson, Mark Z. & Schramm, Stefan & Greiner, Martin, 2015. "Renewable build-up pathways for the US: Generation costs are not system costs," Energy, Elsevier, vol. 81(C), pages 437-445.
    3. Kubik, M.L. & Coker, P.J. & Hunt, C., 2012. "The role of conventional generation in managing variability," Energy Policy, Elsevier, vol. 50(C), pages 253-261.
    4. David Gattie & Michael Hewitt, 2023. "National Security as a Value-Added Proposition for Advanced Nuclear Reactors: A U.S. Focus," Energies, MDPI, vol. 16(17), pages 1-26, August.
    5. Moroni, Stefano & Antoniucci, Valentina & Bisello, Adriano, 2016. "Energy sprawl, land taking and distributed generation: towards a multi-layered density," Energy Policy, Elsevier, vol. 98(C), pages 266-273.
    6. Rubin, Ofir D. & Babcock, Bruce A., 2013. "The impact of expansion of wind power capacity and pricing methods on the efficiency of deregulated electricity markets," Energy, Elsevier, vol. 59(C), pages 676-688.
    7. Woo, C.K. & Zarnikau, J. & Moore, J. & Horowitz, I., 2011. "Wind generation and zonal-market price divergence: Evidence from Texas," Energy Policy, Elsevier, vol. 39(7), pages 3928-3938, July.
    8. Silva Herran, Diego & Dai, Hancheng & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Global assessment of onshore wind power resources considering the distance to urban areas," Energy Policy, Elsevier, vol. 91(C), pages 75-86.
    9. Dixon, Christopher & Reynolds, Steve & Rodley, David, 2016. "Micro/small wind turbine power control for electrolysis applications," Renewable Energy, Elsevier, vol. 87(P1), pages 182-192.
    10. Cannon, D.J. & Brayshaw, D.J. & Methven, J. & Coker, P.J. & Lenaghan, D., 2015. "Using reanalysis data to quantify extreme wind power generation statistics: A 33 year case study in Great Britain," Renewable Energy, Elsevier, vol. 75(C), pages 767-778.
    11. Ronnie D. Lipschutz & Dustin Mulvaney, 2013. "The road not taken, round II: centralized vs. distributed energy strategies and human security," Chapters, in: Hugh Dyer & Maria Julia Trombetta (ed.), International Handbook of Energy Security, chapter 22, pages 483-506, Edward Elgar Publishing.
    12. Elliston, Ben & Riesz, Jenny & MacGill, Iain, 2016. "What cost for more renewables? The incremental cost of renewable generation – An Australian National Electricity Market case study," Renewable Energy, Elsevier, vol. 95(C), pages 127-139.
    13. Peter Lund, 2012. "The European Union challenge: integration of energy, climate, and economic policy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 1(1), pages 60-68, July.
    14. Ritter, Matthias & Shen, Zhiwei & López Cabrera, Brenda & Odening, Martin & Deckert, Lars, 2015. "Designing an index for assessing wind energy potential," Renewable Energy, Elsevier, vol. 83(C), pages 416-424.
    15. Boccard, Nicolas, 2010. "Economic properties of wind power: A European assessment," Energy Policy, Elsevier, vol. 38(7), pages 3232-3244, July.
    16. Firth, Anton & Zhang, Bo & Yang, Aidong, 2019. "Quantification of global waste heat and its environmental effects," Applied Energy, Elsevier, vol. 235(C), pages 1314-1334.
    17. Mirlatifi, A.M. & Egelioglu, F. & Atikol, U., 2015. "An econometric model for annual peak demand for small utilities," Energy, Elsevier, vol. 89(C), pages 35-44.
    18. Michael Jefferson, 2013. "A renewable energy future?," Chapters, in: Roger Fouquet (ed.), Handbook on Energy and Climate Change, chapter 10, pages 254-269, Edward Elgar Publishing.
    19. Arcia-Garibaldi, Guadalupe & Cruz-Romero, Pedro & Gómez-Expósito, Antonio, 2018. "Future power transmission: Visions, technologies and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 285-301.
    20. Wu, Jy S. & Tseng, Hui-Kuan & Liu, Xiaoshuai, 2022. "Techno-economic assessment of bioenergy potential on marginal croplands in the U.S. southeast," Energy Policy, Elsevier, vol. 170(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:46:y:2012:i:c:p:399-416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.