IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v39y2011i10p5751-5762.html
   My bibliography  Save this article

Land clearing and greenhouse gas emissions from Jatropha biofuels on African Miombo Woodlands

Author

Listed:
  • Henny A., Romijn

Abstract

The paper investigates greenhouse gas (GHG) emissions from land use change associated with the introduction of large-scale Jatropha curcas cultivation on Miombo Woodland, using data from extant forestry and ecology studies about this ecosystem. Its results support the notion that Jatropha can help sequester atmospheric carbon when grown on complete wastelands and in severely degraded conditions. Conversely, when introduced on tropical woodlands with substantial biomass and medium/high organic soil carbon content, Jatropha will induce significant emissions that offset any GHG savings from the rest of the biofuel production chain. A carbon debt of more than 30 years is projected. On semi-degraded Miombo the overall GHG balance of Jatropha is found to hinge a lot on the extent of carbon depletion of the soil, more than on the state of the biomass. This finding points to the urgent need for detailed measurements of soil carbon in a range of Miombo sub-regions and similar tropical dryland ecosystems in Asia and Latin America. Efforts should be made to clarify concepts such as 'degraded lands' and 'wastelands' and to refine land allocation criteria and official GHG calculation methodologies for biofuels on that basis.

Suggested Citation

  • Henny A., Romijn, 2011. "Land clearing and greenhouse gas emissions from Jatropha biofuels on African Miombo Woodlands," Energy Policy, Elsevier, vol. 39(10), pages 5751-5762, October.
  • Handle: RePEc:eee:enepol:v:39:y:2011:i:10:p:5751-5762
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421510005719
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Turner, Brian T. & Plevin, Richard J. & O'Hare, Michael & Farrell, Alexander E., 2007. "Creating Markets for Green Biofuels: Measuring and improving environmental performance," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt0mm0m9xm, Institute of Transportation Studies, UC Berkeley.
    2. Janine Bloomfield & Holly Pearson, 2000. "Land Use, Land-Use Change, Forestry, and Agricultural Activities in the Clean Development Mechanism: Estimates of Greenhouse Gas Offset Potential," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 5(1), pages 9-24, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongxi (Eric) Huang & Yueyue Fan & Chien-Wei Chen, 2014. "An Integrated Biofuel Supply Chain to Cope with Feedstock Seasonality and Uncertainty," Transportation Science, INFORMS, vol. 48(4), pages 540-554, November.
    2. Daniel M. Kammen & Alexander E. Farrell & Richard J. Plevin & Andrew D. Jones & Mark A. Delucchi & Gregory F. Nemet, 2007. "Energy and Greenhouse Impacts of Biofuels: A Framework for Analysis," OECD/ITF Joint Transport Research Centre Discussion Papers 2007/2, OECD Publishing.
    3. Katharina Schulze & Žiga Malek & Dmitry Schepaschenko & Myroslava Lesiv & Steffen Fritz & Peter H. Verburg, 2023. "Pantropical distribution of short-rotation woody plantations: spatial probabilities under current and future climate," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(5), pages 1-22, June.
    4. Fan, Yueyue & Huang, Yongxi & Chen, Chien-Wei, 2012. "Multistage Infrastructure System Design: An Integrated Biofuel Supply Chain against Feedstock Seasonality and Uncertainty," Institute of Transportation Studies, Working Paper Series qt9g8413m5, Institute of Transportation Studies, UC Davis.
    5. Jared Hardner & Peter Frumhoff & Darren Goetze, 2000. "Prospects for mitigating carbon, conserving biodiversity, and promoting socioeconomic development objectives through the clean development mechanism," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 5(1), pages 61-80, March.
    6. Cacho, Oscar J. & Milne, Sarah & Gonzalez, Ricardo & Tacconi, Luca, 2014. "Benefits and costs of deforestation by smallholders: Implications for forest conservation and climate policy," Ecological Economics, Elsevier, vol. 107(C), pages 321-332.
    7. Adetoye, Ayoade Matthew & Okojie, Luke O. & Akerele, Dare, 2018. "Forest carbon sequestration supply function for African countries: An econometric modelling approach," Forest Policy and Economics, Elsevier, vol. 90(C), pages 59-66.
    8. Kammen, Daniel M. & Farrell, Alexander E & Plevin, Richard J & Jones, Andrew & Nemet, Gregory F & Delucchi, Mark, 2008. "Energy and Greenhouse Gas Impacts of Biofuels: A Framework for Analysis," Institute of Transportation Studies, Working Paper Series qt5qw5g6q2, Institute of Transportation Studies, UC Davis.
    9. Oscar J. Cacho & Graham R. Marshall & Mary Milne, 2003. "Smallholder Agroforestry Projects: Potential for carbon sequestration and poverty alleviation," Working Papers 03-06, Agricultural and Development Economics Division of the Food and Agriculture Organization of the United Nations (FAO - ESA).
    10. Shaheen, Susan A. & Bejamin-Chung, Jade & Allen, Denise & Howe-Steiger, Linda, 2009. "Achieving California’s Land Use and Transportation Greenhouse Gas Emission Targets Under AB 32: An Exploration of Potential Policy Processes and Mechanisms," Institute of Transportation Studies, Working Paper Series qt8bm4t7w5, Institute of Transportation Studies, UC Davis.
    11. Sol-E Choi & Moonil Kim & Yowhan Son & Seong-Woo Jeon & Kyeong-Hak Lee & Whijin Kim & Sun-Jeoung Lee & Woo-Kyun Lee, 2024. "Development of Activity Data for Greenhouse Gas Inventory in Settlements in South Korea," Land, MDPI, vol. 13(4), pages 1-21, April.
    12. Malik, Urooj S. & Ahmed, Mahfuz & Sombilla, Mercedita A. & Cueno, Sarah L., 2009. "Biofuels production for smallholder producers in the Greater Mekong Sub-region," Applied Energy, Elsevier, vol. 86(Supplemen), pages 58-68, November.
    13. V. Krishna Prasad & K.V.S. Badarinath & H. Tsuruta & S. Sudo & S. Yonemura & John Cardina & Benjamin Stinner & Richard Moore & Deborah Stinner & Casey Hoy, 2003. "Implications of Land Use Changes on Carbon Dynamics and Sequestration—Evaluation from Forestry Datasets, India," Environment Systems and Decisions, Springer, vol. 23(2), pages 175-187, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:39:y:2011:i:10:p:5751-5762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.