IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v38y2010i8p4076-4088.html
   My bibliography  Save this article

Insight into the Greek electric sector and energy planning with mature technologies and fuel diversification

Author

Listed:
  • Rampidis, I.M.
  • Giannakopoulos, D.
  • Bergeles, G.C.

Abstract

The numerous available options for the development of the Greek electric sector in combination with the various techno-economic and political constraints make energy planning rather complex. Furthermore, as full auctioning of CO2 allowances shall be the rule from 2013 onwards for the electric sector following free allocation, even more uncertainties emerge. This work aims at investigating the main characteristics of the Greek electric system taking into consideration the various allowance allocation schemes, evaluates fundamental energy scenarios and ultimately performs energy planning. The reliability of the algorithm utilised is assessed by predicting successfully key figure energy results for years 2004-2008. Main parameter under investigation in the study is the cost of CO2 emissions allowances, while expansion scenarios are evaluated according to a newly developed set of indices standing for feasibility, environmental performance, cost effectiveness and energy safety. Many expansion scenarios examined were proved unrealistic as led to extremely high utilization of imported fuels for electricity production, while others proved inefficient on environmental or economic basis. Finally, it was proved that if a "conservative" energy planning is adopted, emissions reduction in 2020 can reach 6.3% over 2005.

Suggested Citation

  • Rampidis, I.M. & Giannakopoulos, D. & Bergeles, G.C., 2010. "Insight into the Greek electric sector and energy planning with mature technologies and fuel diversification," Energy Policy, Elsevier, vol. 38(8), pages 4076-4088, August.
  • Handle: RePEc:eee:enepol:v:38:y:2010:i:8:p:4076-4088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(10)00197-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dagoumas, A.S. & Panapakidis, I.P. & Papagiannis, G.K. & Dokopoulos, P.S., 2008. "Post-Kyoto energy consumption strategies for the Greek interconnected electric system," Energy Policy, Elsevier, vol. 36(6), pages 1980-1999, June.
    2. Capros, Pantelis & Mantzos, Leonidas & Parousos, Leonidas & Tasios, Nikolaos & Klaassen, Ger & Van Ierland, Tom, 2011. "Analysis of the EU policy package on climate change and renewables," Energy Policy, Elsevier, vol. 39(3), pages 1476-1485, March.
    3. Agoris, D. & Tigas, K. & Giannakidis, G. & Siakkis, F. & Vassos, S. & Vassilakos, N. & Kilias, V. & Damassiotis, M., 2004. "An analysis of the Greek energy system in view of the Kyoto commitments," Energy Policy, Elsevier, vol. 32(18), pages 2019-2033, December.
    4. Dagoumas, A.S. & Kalaitzakis, E. & Papagiannis, G.K. & Dokopoulos, P.S., 2007. "A post-Kyoto analysis of the Greek electric sector," Energy Policy, Elsevier, vol. 35(3), pages 1551-1563, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Koltsaklis, Nikolaos E. & Liu, Pei & Georgiadis, Michael C., 2015. "An integrated stochastic multi-regional long-term energy planning model incorporating autonomous power systems and demand response," Energy, Elsevier, vol. 82(C), pages 865-888.
    2. Roinioti, Argiro & Koroneos, Christopher & Wangensteen, Ivar, 2012. "Modeling the Greek energy system: Scenarios of clean energy use and their implications," Energy Policy, Elsevier, vol. 50(C), pages 711-722.
    3. Halkos, George & Tzeremes, Panagiotis, 2015. "Scenario analysis on greenhouse gas emissions reduction in Southeast Balkans' energy system," MPRA Paper 65280, University Library of Munich, Germany.
    4. Voumvoulakis, Emmanouil & Asimakopoulou, Georgia & Danchev, Svetoslav & Maniatis, George & Tsakanikas, Aggelos, 2012. "Large scale integration of intermittent renewable energy sources in the Greek power sector," Energy Policy, Elsevier, vol. 50(C), pages 161-173.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Halkos, George & Tzeremes, Panagiotis, 2015. "Scenario analysis on greenhouse gas emissions reduction in Southeast Balkans' energy system," MPRA Paper 65280, University Library of Munich, Germany.
    2. Voumvoulakis, Emmanouil & Asimakopoulou, Georgia & Danchev, Svetoslav & Maniatis, George & Tsakanikas, Aggelos, 2012. "Large scale integration of intermittent renewable energy sources in the Greek power sector," Energy Policy, Elsevier, vol. 50(C), pages 161-173.
    3. Koltsaklis, Nikolaos E. & Liu, Pei & Georgiadis, Michael C., 2015. "An integrated stochastic multi-regional long-term energy planning model incorporating autonomous power systems and demand response," Energy, Elsevier, vol. 82(C), pages 865-888.
    4. Dagoumas, A.S. & Panapakidis, I.P. & Papagiannis, G.K. & Dokopoulos, P.S., 2008. "Post-Kyoto energy consumption strategies for the Greek interconnected electric system," Energy Policy, Elsevier, vol. 36(6), pages 1980-1999, June.
    5. Roinioti, Argiro & Koroneos, Christopher & Wangensteen, Ivar, 2012. "Modeling the Greek energy system: Scenarios of clean energy use and their implications," Energy Policy, Elsevier, vol. 50(C), pages 711-722.
    6. Dagoumas, Athanasios S. & Koltsaklis, Nikolaos E., 2019. "Review of models for integrating renewable energy in the generation expansion planning," Applied Energy, Elsevier, vol. 242(C), pages 1573-1587.
    7. Kalampalikas, Nikolaos G. & Pilavachi, Petros A., 2010. "A model for the development of a power production system in Greece, Part I: Where RES do not meet EU targets," Energy Policy, Elsevier, vol. 38(11), pages 6499-6513, November.
    8. Hermeling, Claudia & Löschel, Andreas & Mennel, Tim, 2013. "A new robustness analysis for climate policy evaluations: A CGE application for the EU 2020 targets," Energy Policy, Elsevier, vol. 55(C), pages 27-35.
    9. Venmans, Frank, 2012. "A literature-based multi-criteria evaluation of the EU ETS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5493-5510.
    10. Gren, Ing-Marie & Carlsson, Mattias & Elofsson, Katarina & Munnich, Miriam, 2012. "Stochastic carbon sinks for combating carbon dioxide emissions in the EU," Energy Economics, Elsevier, vol. 34(5), pages 1523-1531.
    11. De Cara, Stéphane & Jayet, Pierre-Alain, 2011. "Marginal abatement costs of greenhouse gas emissions from European agriculture, cost effectiveness, and the EU non-ETS burden sharing agreement," Ecological Economics, Elsevier, vol. 70(9), pages 1680-1690, July.
    12. Cross, Sam & Hast, Aira & Kuhi-Thalfeldt, Reeli & Syri, Sanna & Streimikiene, Dalia & Denina, Arta, 2015. "Progress in renewable electricity in Northern Europe towards EU 2020 targets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1768-1780.
    13. Adamczyk, Janusz & Dylewski, Robert, 2017. "Changes in heat transfer coefficients in Poland and their impact on energy demand - an environmental and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 530-538.
    14. Orecchia, Carlo & Parrado, Ramiro, 2013. "A Quantitative Assessment of the Implications of Including non-CO2 Emissions in the European ETS," Climate Change and Sustainable Development 162416, Fondazione Eni Enrico Mattei (FEEM).
    15. Carlén, Björn & Hernández, Aday, 2013. "Indexing European carbon taxes to the EU ETS Permit Price: a good idea?," Working papers in Transport Economics 2013:33, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    16. Marc Vielle, 2020. "Navigating various flexibility mechanisms under European burden-sharing," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(2), pages 267-313, April.
    17. Tol, Richard S.J., 2009. "Intra-union flexibility of non-ETS emission reduction obligations in the European Union," Energy Policy, Elsevier, vol. 37(5), pages 1745-1752, May.
    18. Matar, Walid & Murphy, Frederic & Pierru, Axel & Rioux, Bertrand, 2015. "Lowering Saudi Arabia's fuel consumption and energy system costs without increasing end consumer prices," Energy Economics, Elsevier, vol. 49(C), pages 558-569.
    19. Sijm, Jos & Lehmann, Paul & Chewpreecha, Unnada & Gawel, Erik & Mercure, Jean-Francois & Pollitt, Hector & Strunz, Sebastian, 2014. "EU climate and energy policy beyond 2020: Are additional targets and instruments for renewables economically reasonable?," UFZ Discussion Papers 3/2014, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    20. Tol, Richard S.J., 2012. "A cost–benefit analysis of the EU 20/20/2020 package," Energy Policy, Elsevier, vol. 49(C), pages 288-295.

    More about this item

    Keywords

    Greek electric sector Energy planning CO2 allowances;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:8:p:4076-4088. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.