IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v37y2009i12p5650-5661.html
   My bibliography  Save this article

GHG reduction potential of changes in consumption patterns and higher quality levels: Evidence from Swiss household consumption survey

Author

Listed:
  • Girod, Bastien
  • de Haan, Peter

Abstract

An effective consumer-oriented climate policy requires knowing the GHG reduction potential of sustainable consumption. The aim of this study is to draw lessons from differences in consumption between households with high and low GHG emissions. We evaluate a survey of 14,500 households and use a method that allows measuring changes in price level of consumption. Comparing the 10% of households with the highest GHG emissions per capita with the lowest 10% - controlling for differences in expenditure level and household structure - we find a range 5-17 tons of CO2-equivalent per capita and year. The observed differences stem mainly from heating, electricity use, car use, and travel by aircraft. Consumption patterns with low GHG emissions are characterized by less spending on mobility, but more on leisure and quality oriented consumption (leading to higher prices per unit). Further characteristics are: a higher share of organic food, low meat consumption and fewer detached single family houses. Our findings imply that a significant reduction in GHG emissions would be possible by adopting real-world consumption patterns observable in society. The twin challenge is to shift consumption towards more climate friendly patterns, and to prevent any trend towards high emitting consumption patterns.

Suggested Citation

  • Girod, Bastien & de Haan, Peter, 2009. "GHG reduction potential of changes in consumption patterns and higher quality levels: Evidence from Swiss household consumption survey," Energy Policy, Elsevier, vol. 37(12), pages 5650-5661, December.
  • Handle: RePEc:eee:enepol:v:37:y:2009:i:12:p:5650-5661
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(09)00615-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brand, Christian & Boardman, Brenda, 2008. "Taming of the few--The unequal distribution of greenhouse gas emissions from personal travel in the UK," Energy Policy, Elsevier, vol. 36(1), pages 224-238, January.
    2. Vringer, Kees & Blok, Kornelis, 1995. "The direct and indirect energy requirements of households in the Netherlands," Energy Policy, Elsevier, vol. 23(10), pages 893-910, October.
    3. Henri C. Moll & Klaas Jan Noorman & Rixt Kok & Rebecka Engström & Harald Throne‐Holst & Charlotte Clark, 2005. "Pursuing More Sustainable Consumption by Analyzing Household Metabolism in European Countries and Cities," Journal of Industrial Ecology, Yale University, vol. 9(1‐2), pages 259-275, January.
    4. Faiers, Adam & Cook, Matt & Neame, Charles, 2007. "Towards a contemporary approach for understanding consumer behaviour in the context of domestic energy use," Energy Policy, Elsevier, vol. 35(8), pages 4381-4390, August.
    5. Kok, Rixt & Benders, Rene M.J. & Moll, Henri C., 2006. "Measuring the environmental load of household consumption using some methods based on input-output energy analysis: A comparison of methods and a discussion of results," Energy Policy, Elsevier, vol. 34(17), pages 2744-2761, November.
    6. Peters, Anja & Mueller, Michel G. & de Haan, Peter & Scholz, Roland W., 2008. "Feebates promoting energy-efficient cars: Design options to address more consumers and possible counteracting effects," Energy Policy, Elsevier, vol. 36(4), pages 1355-1365, April.
    7. Edgar G. Hertwich, 2005. "Consumption and Industrial Ecology," Journal of Industrial Ecology, Yale University, vol. 9(1‐2), pages 1-6, January.
    8. Schiffer, Hans-Wilhelm, 2008. "WEC energy policy scenarios to 2050," Energy Policy, Elsevier, vol. 36(7), pages 2464-2470, July.
    9. Ornetzeder, Michael & Hertwich, Edgar G. & Hubacek, Klaus & Korytarova, Katarina & Haas, Willi, 2008. "The environmental effect of car-free housing: A case in Vienna," Ecological Economics, Elsevier, vol. 65(3), pages 516-530, April.
    10. Lenzen, Manfred & Wier, Mette & Cohen, Claude & Hayami, Hitoshi & Pachauri, Shonali & Schaeffer, Roberto, 2006. "A comparative multivariate analysis of household energy requirements in Australia, Brazil, Denmark, India and Japan," Energy, Elsevier, vol. 31(2), pages 181-207.
    11. Alfredsson, E.C., 2004. "“Green” consumption—no solution for climate change," Energy, Elsevier, vol. 29(4), pages 513-524.
    12. Benders, Rene M.J. & Kok, Rixt & Moll, Henri C. & Wiersma, Gerwin & Noorman, Klaas Jan, 2006. "New approaches for household energy conservation--In search of personal household energy budgets and energy reduction options," Energy Policy, Elsevier, vol. 34(18), pages 3612-3622, December.
    13. Annika Carlsson‐Kanyama & Rebecka Engström & Rixt Kok, 2005. "Indirect and Direct Energy Requirements of City Households in Sweden: Options for Reduction, Lessons from Modeling," Journal of Industrial Ecology, Yale University, vol. 9(1‐2), pages 221-235, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chitnis, Mona & Sorrell, Steve & Druckman, Angela & Firth, Steven K. & Jackson, Tim, 2014. "Who rebounds most? Estimating direct and indirect rebound effects for different UK socioeconomic groups," Ecological Economics, Elsevier, vol. 106(C), pages 12-32.
    2. O' Mahony, Tadhg & Zhou, P. & Sweeney, John, 2013. "Integrated scenarios of energy-related CO2 emissions in Ireland: A multi-sectoral analysis to 2020," Ecological Economics, Elsevier, vol. 93(C), pages 385-397.
    3. Emma Watkins & Patrick Ten Brink & Jean-Pierre Schweitzer & Lucile Rogissart & Martin Nesbit, 2016. "Policy Mixes to Achieve Absolute Decoupling: An Ex Ante Assessment," Sustainability, MDPI, vol. 8(6), pages 1-17, June.
    4. Druckman, Angela & Chitnis, Mona & Sorrell, Steve & Jackson, Tim, 2011. "Missing carbon reductions? Exploring rebound and backfire effects in UK households," Energy Policy, Elsevier, vol. 39(6), pages 3572-3581, June.
    5. Gössling, Stefan, 2019. "Celebrities, air travel, and social norms," Annals of Tourism Research, Elsevier, vol. 79(C).
    6. Mair, Simon & Druckman, Angela & Jackson, Tim, 2019. "Higher Wages for Sustainable Development? Employment and Carbon Effects of Paying a Living Wage in Global Apparel Supply Chains," Ecological Economics, Elsevier, vol. 159(C), pages 11-23.
    7. David Font Vivanco & Jaume Freire‐González & Ray Galvin & Tilman Santarius & Hans Jakob Walnum & Tamar Makov & Serenella Sala, 2022. "Rebound effect and sustainability science: A review," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1543-1563, August.
    8. Maja Wiprächtiger & Martina Rapp & Stefanie Hellweg & Rhythima Shinde & Melanie Haupt, 2022. "Turning trash into treasure: An approach to the environmental assessment of waste prevention and its application to clothing and furniture in Switzerland," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1389-1405, August.
    9. Järmo Stablo & Chantal Ruppert-Winkel, 2012. "The Integration of Energy Conservation into the Political Goal of Renewable Energy Self-Sufficiency—A German Case Study Based on a Longitudinal Reconstruction," Sustainability, MDPI, vol. 4(5), pages 1-29, May.
    10. Andreas Froemelt & René Buffat & Stefanie Hellweg, 2020. "Machine learning based modeling of households: A regionalized bottom‐up approach to investigate consumption‐induced environmental impacts," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 639-652, June.
    11. Muhamad Amin Rifai & Nunung Nuryartono & Mohammad Iqbal Irfany, 2024. "Carbon Footprint Based on Household Consumption: Case Study on Cocoa Farmer’s Household in Polewali Mandar," Journal of Sustainable Development, Canadian Center of Science and Education, vol. 11(6), pages 1-15, July.
    12. Font Vivanco, David & McDowall, Will & Freire-González, Jaume & Kemp, René & van der Voet, Ester, 2016. "The foundations of the environmental rebound effect and its contribution towards a general framework," Ecological Economics, Elsevier, vol. 125(C), pages 60-69.
    13. Cecilia Matasci & Marcel Gauch & Heinz Böni & Patrick Wäger, 2021. "The Influence of Consumer Behavior on Climate Change: The Case of Switzerland," Sustainability, MDPI, vol. 13(5), pages 1-24, March.
    14. Murray, Cameron K., 2013. "What if consumers decided to all ‘go green’? Environmental rebound effects from consumption decisions," Energy Policy, Elsevier, vol. 54(C), pages 240-256.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Annika Carlsson Kanyama & Jonas Nässén & René Benders, 2021. "Shifting expenditure on food, holidays, and furnishings could lower greenhouse gas emissions by almost 40%," Journal of Industrial Ecology, Yale University, vol. 25(6), pages 1602-1616, December.
    2. Kerkhof, Annemarie C. & Benders, Ren M.J. & Moll, Henri C., 2009. "Determinants of variation in household CO2 emissions between and within countries," Energy Policy, Elsevier, vol. 37(4), pages 1509-1517, April.
    3. Shammin, Md. R. & Herendeen, Robert A. & Hanson, Michelle J. & Wilson, Eric J.H., 2010. "A multivariate analysis of the energy intensity of sprawl versus compact living in the U.S. for 2003," Ecological Economics, Elsevier, vol. 69(12), pages 2363-2373, October.
    4. Wiedenhofer, Dominik & Lenzen, Manfred & Steinberger, Julia K., 2013. "Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications," Energy Policy, Elsevier, vol. 63(C), pages 696-707.
    5. Murray, Cameron K, 2011. "Income dependent direct and indirect rebound effects from ’green’ consumption choices in Australia," MPRA Paper 34973, University Library of Munich, Germany.
    6. Ala-Mantila, Sanna & Heinonen, Jukka & Junnila, Seppo, 2014. "Relationship between urbanization, direct and indirect greenhouse gas emissions, and expenditures: A multivariate analysis," Ecological Economics, Elsevier, vol. 104(C), pages 129-139.
    7. Kerkhof, Annemarie C. & Nonhebel, Sanderine & Moll, Henri C., 2009. "Relating the environmental impact of consumption to household expenditures: An input-output analysis," Ecological Economics, Elsevier, vol. 68(4), pages 1160-1170, February.
    8. Manfred Lenzen & Robert A. Cummins, 2013. "Happiness versus the Environment—A Case Study of Australian Lifestyles," Challenges, MDPI, vol. 4(1), pages 1-19, May.
    9. Wilson, Jeffrey & Spinney, Jamie & Millward, Hugh & Scott, Darren & Hayden, Anders & Tyedmers, Peter, 2013. "Blame the exurbs, not the suburbs: Exploring the distribution of greenhouse gas emissions within a city region," Energy Policy, Elsevier, vol. 62(C), pages 1329-1335.
    10. Yu, Biying & Zhang, Junyi & Fujiwara, Akimasa, 2011. "Representing in-home and out-of-home energy consumption behavior in Beijing," Energy Policy, Elsevier, vol. 39(7), pages 4168-4177, July.
    11. Smetschka, Barbara & Wiedenhofer, Dominik & Egger, Claudine & Haselsteiner, Edeltraud & Moran, Daniel & Gaube, Veronika, 2019. "Time Matters: The Carbon Footprint of Everyday Activities in Austria," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    12. Weber, Christopher L. & Matthews, H. Scott, 2008. "Quantifying the global and distributional aspects of American household carbon footprint," Ecological Economics, Elsevier, vol. 66(2-3), pages 379-391, June.
    13. Abrahamse, Wokje & Steg, Linda, 2009. "How do socio-demographic and psychological factors relate to households' direct and indirect energy use and savings?," Journal of Economic Psychology, Elsevier, vol. 30(5), pages 711-720, October.
    14. Buechs, Milena & Schnepf, Sylke V., 2013. "UK Households' Carbon Footprint: A Comparison of the Association between Household Characteristics and Emissions from Home Energy, Transport and Other Goods and Services," IZA Discussion Papers 7204, Institute of Labor Economics (IZA).
    15. Steg, Linda, 2008. "Promoting household energy conservation," Energy Policy, Elsevier, vol. 36(12), pages 4449-4453, December.
    16. Vringer, Kees & Benders, René & Wilting, Harry & Brink, Corjan & Drissen, Eric & Nijdam, Durk & Hoogervorst, Nico, 2010. "A hybrid multi-region method (HMR) for assessing the environmental impact of private consumption," Ecological Economics, Elsevier, vol. 69(12), pages 2510-2516, October.
    17. Chen, Guangwu & Zhu, Yuhan & Wiedmann, Thomas & Yao, Lina & Xu, Lixiao & Wang, Yafei, 2019. "Urban-rural disparities of household energy requirements and influence factors in China: Classification tree models," Applied Energy, Elsevier, vol. 250(C), pages 1321-1335.
    18. Jordi Roca & Monica Serrano, 2008. "Embodied pollution in Spanish household consumption: a disaggregate analysis," Working Papers in Economics 204, Universitat de Barcelona. Espai de Recerca en Economia.
    19. Ornetzeder, Michael & Hertwich, Edgar G. & Hubacek, Klaus & Korytarova, Katarina & Haas, Willi, 2008. "The environmental effect of car-free housing: A case in Vienna," Ecological Economics, Elsevier, vol. 65(3), pages 516-530, April.
    20. Kok, Rixt & Benders, Rene M.J. & Moll, Henri C., 2006. "Measuring the environmental load of household consumption using some methods based on input-output energy analysis: A comparison of methods and a discussion of results," Energy Policy, Elsevier, vol. 34(17), pages 2744-2761, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:37:y:2009:i:12:p:5650-5661. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.