IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v36y2008i3p999-1018.html
   My bibliography  Save this article

Natural-gas-powered thermoelectricity as a reliability factor in the Brazilian electric sector

Author

Listed:
  • Fernandes, E.
  • de Oliveira, J.C.S.
  • de Oliveira, P.R.
  • Alonso, P.S.R.

Abstract

The introduction of natural-gas-powered thermoelectricity into the Brazilian generation sector can be considered as a very complex energy, economic, regulatory and institutional revision. Brazil is a country with very specific characteristics in electricity generation, as approximately 80% of the generating capacity is based on hydroelectricity, showing strong dependency on rain and management of water reservoirs. A low rate of investment in the Brazilian Electricity Industry in the period of 1995-2000, associated with periods of low rainfall, led to a dramatic lowering of the water stocks in the reservoirs. With this scenario and the growing supply of natural gas, both from within Brazil and imported, natural gas thermal electric plants became a good option to diversify the electrical supply system. In spite of the Brazilian Government's efforts to install such plants, the country was faced with severe electricity rationing in 2001. The objective of this work is to show the need to continue with the implementation of natural gas thermal electricity projects, in a manner that allows flexibility and guarantees greater working reliability for the entire Brazilian electricity sector. Taking into account the world trend towards renewable energy, the perspectives of usage of biofuels in the Brazilian Energy Matrix and in electrical energy generation are also analyzed. The very issue of electrical power efficiency in Brazil and its challenges and strategic proposals from the standpoint of Government Programs and results provided so far are presented. The technological constraints in order to put on stream the thermal electric plants are also analyzed. The article concludes with a positive perspective of the usage of natural gas as to be the third pillar in the Brazilian Energy Matrix for the years to come.

Suggested Citation

  • Fernandes, E. & de Oliveira, J.C.S. & de Oliveira, P.R. & Alonso, P.S.R., 2008. "Natural-gas-powered thermoelectricity as a reliability factor in the Brazilian electric sector," Energy Policy, Elsevier, vol. 36(3), pages 999-1018, March.
  • Handle: RePEc:eee:enepol:v:36:y:2008:i:3:p:999-1018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(07)00436-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vine, Edward & Hamrin, Jan & Eyre, Nick & Crossley, David & Maloney, Michelle & Watt, Greg, 2003. "Public policy analysis of energy efficiency and load management in changing electricity businesses," Energy Policy, Elsevier, vol. 31(5), pages 405-430, April.
    2. Li, Xianguo, 2005. "Diversification and localization of energy systems for sustainable development and energy security," Energy Policy, Elsevier, vol. 33(17), pages 2237-2243, November.
    3. Fernandes, Elton & Fonseca, Marcus Vinicius de A. & Alonso, Paulo Sergio R., 2005. "Natural gas in Brazil's energy matrix: demand for 1995-2010 and usage factors," Energy Policy, Elsevier, vol. 33(3), pages 365-386, February.
    4. Michelle Michot Foss, 2005. "Global Natural Gas Issues and Challenges: A Commentary," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 111-128.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. dos Santos, Sidney Pereira & Eugenio Leal, José & Oliveira, Fabrício, 2011. "The development of a natural gas transportation logistics management system," Energy Policy, Elsevier, vol. 39(9), pages 4774-4784, September.
    2. da Silva, Vinícius Oliveira & Relva, Stefania Gomes & Mondragon, Marcella & Mendes, André Bergsten & Nishimoto, Kazuo & Peyerl, Drielli, 2023. "Building Options for the Brazilian Pre-salt: A technical-economic and infrastructure analysis of offshore integration between energy generation and natural gas exploration," Resources Policy, Elsevier, vol. 81(C).
    3. Corrêa da Silva, Rodrigo & de Marchi Neto, Ismael & Silva Seifert, Stephan, 2016. "Electricity supply security and the future role of renewable energy sources in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 328-341.
    4. Anuta, Oghenetejiri Harold & Taylor, Phil & Jones, Darren & McEntee, Tony & Wade, Neal, 2014. "An international review of the implications of regulatory and electricity market structures on the emergence of grid scale electricity storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 489-508.
    5. Hunt., Julian David & Stilpen, Daniel & de Freitas, Marcos Aurélio Vasconcelos, 2018. "A review of the causes, impacts and solutions for electricity supply crises in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 208-222.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brinkley, Catherine, 2018. "The conundrum of combustible clean energy: Sweden's history of siting district heating smokestacks in residential areas," Energy Policy, Elsevier, vol. 120(C), pages 526-532.
    2. Edwards, Joel & Othman, Maazuza & Burn, Stewart, 2015. "A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 815-828.
    3. Kemppi, Heikki & Perrels, Adriaan, 2003. "Liberalised Electricity Markets - Strengths and Weaknesses in Finland and Nordpool," Research Reports 97, VATT Institute for Economic Research.
    4. Chuang, Ming Chih & Ma, Hwong Wen, 2013. "Energy security and improvements in the function of diversity indices—Taiwan energy supply structure case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 9-20.
    5. Zhang, Hai-Ying & Ji, Qiang & Fan, Ying, 2013. "An evaluation framework for oil import security based on the supply chain with a case study focused on China," Energy Economics, Elsevier, vol. 38(C), pages 87-95.
    6. B. Sudhakara Reddy & Gaudenz Assenza, 2007. "Barriers and Drivers to Energy Efficiency - A new Taxonomical Approach," Development Economics Working Papers 22348, East Asian Bureau of Economic Research.
    7. Sanya Carley & Richard Andrews, 2012. "Creating a sustainable U.S. electricity sector: the question of scale," Policy Sciences, Springer;Society of Policy Sciences, vol. 45(2), pages 97-121, June.
    8. Oberndorfer, Ulrich & Ulbricht, Dirk, 2007. "Lost in Transmission? Stock Market Impacts of the 2006 European Gas Crisis," ZEW Discussion Papers 07-030, ZEW - Leibniz Centre for European Economic Research.
    9. Li, Tao & Li, Ang & Guo, Xiaopeng, 2020. "The sustainable development-oriented development and utilization of renewable energy industry——A comprehensive analysis of MCDM methods," Energy, Elsevier, vol. 212(C).
    10. Moises Neil V Seriño, 2022. "Energy security through diversification of non-hydro renewable energy sources in developing countries," Energy & Environment, , vol. 33(3), pages 546-561, May.
    11. Byrnes, Liam & Brown, Colin & Foster, John & Wagner, Liam D., 2013. "Australian renewable energy policy: Barriers and challenges," Renewable Energy, Elsevier, vol. 60(C), pages 711-721.
    12. Antonio Angelo Romano & Giuseppe Scandurra & Alfonso Carfora, 2016. "Estimating the Impact of Feed-in Tariff Adoption: Similarities and Divergences among Countries through a Propensity-score Matching Method," International Journal of Energy Economics and Policy, Econjournals, vol. 6(2), pages 144-151.
    13. Wee, Hui-Ming & Yang, Wen-Hsiung & Chou, Chao-Wu & Padilan, Marivic V., 2012. "Renewable energy supply chains, performance, application barriers, and strategies for further development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5451-5465.
    14. Cécile Couharde & Fatih Karanfil & Eric Gabin Kilama & Luc-Désiré Omgba, 2017. "The Importance of Oil in the Allocation of Foreign Aid: The case of the G7 donors," Working Papers hal-04141627, HAL.
    15. Irfan Ullah Munir & Shen Yue & Abdelmohsen A. Nassani & Muhammad Moinuddin Qazi Abro & Shabir Hyder & Khalid Zaman, 2021. "Structural changes, financial and business regulatory measures, energy and tourism demand: Evidence from group of seven countries," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 2198-2218, April.
    16. Zhang, Hongwei & Wang, Ying & Yang, Cai & Guo, Yaoqi, 2021. "The impact of country risk on energy trade patterns based on complex network and panel regression analyses," Energy, Elsevier, vol. 222(C).
    17. Couharde, Cécile & Karanfil, Fatih & Kilama, Eric Gabin & Omgba, Luc Désiré, 2020. "The role of oil in the allocation of foreign aid: The case of the G7 donors," Journal of Comparative Economics, Elsevier, vol. 48(2), pages 363-383.
    18. Varha Maaloum & El Moustapha Bououbeid & Mohamed Mahmoud Ali & Kaan Yetilmezsoy & Shafiqur Rehman & Christophe Ménézo & Abdel Kader Mahmoud & Shahab Makoui & Mamadou Lamine Samb & Ahmed Mohamed Yahya, 2024. "Techno-Economic Analysis of Combined Production of Wind Energy and Green Hydrogen on the Northern Coast of Mauritania," Sustainability, MDPI, vol. 16(18), pages 1-25, September.
    19. Borge-Diez, David & Colmenar-Santos, Antonio & Pérez-Molina, Clara & López-Rey, África, 2015. "Geothermal source heat pumps under energy services companies finance scheme to increase energy efficiency and production in stockbreeding facilities," Energy, Elsevier, vol. 88(C), pages 821-836.
    20. Wu, Gang & Wei, Yi-Ming & Fan, Ying & Liu, Lan-Cui, 2007. "An empirical analysis of the risk of crude oil imports in China using improved portfolio approach," Energy Policy, Elsevier, vol. 35(8), pages 4190-4199, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:36:y:2008:i:3:p:999-1018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.