IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v36y2008i10p3807-3813.html
   My bibliography  Save this article

Performance of commercially available solar and heat pump water heaters

Author

Listed:
  • Lloyd, C.R.
  • Kerr, A.S.D.

Abstract

Many countries are using policy incentives to encourage the adoption of energy-efficient hot water heating as a means of reducing greenhouse gas emissions. Such policies rely heavily on assumed performance factors for such systems. In-situ performance data for solar and heat pump hot water systems, however, are not copious in the literature. Otago University has been testing some systems available in New Zealand for a number of years. The results obtained are compared to international studies of in-situ performance of solar hot water systems and heat pump hot water systems, by converting the results from the international studies into a single index suitable for both solar and heat pump systems (COP). Variability in the international data is investigated as well as comparisons to model results. The conclusions suggest that there is not too much difference in performance between solar systems that have a permanently connected electric boost backup and heat pump systems over a wide range of environmental temperatures. The energy payback time was also calculated for electric boost solar flat plate systems as a function of both COP and hot water usage for a given value of embodied energy. The calculations generally bode well for solar systems but ensuring adequate system performance is paramount. In addition, such systems generally favour high usage rates to obtain good energy payback times.

Suggested Citation

  • Lloyd, C.R. & Kerr, A.S.D., 2008. "Performance of commercially available solar and heat pump water heaters," Energy Policy, Elsevier, vol. 36(10), pages 3807-3813, October.
  • Handle: RePEc:eee:enepol:v:36:y:2008:i:10:p:3807-3813
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00349-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lloyd, Bob, 2007. "The Commons revisited: The tragedy continues," Energy Policy, Elsevier, vol. 35(11), pages 5806-5818, November.
    2. Tully, N., 1995. "The influence of electrical backup element size on the performance of a solar thermosyphon DHW system," Energy, Elsevier, vol. 20(3), pages 209-217.
    3. Lloyd, C.R, 2001. "Renewable energy options for hot water systems in remote areas," Renewable Energy, Elsevier, vol. 22(1), pages 335-343.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zhangyuan & Guo, Peng & Zhang, Haijing & Yang, Wansheng & Mei, Sheng, 2017. "Comprehensive review on the development of SAHP for domestic hot water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 871-881.
    2. Panaras, G. & Mathioulakis, E. & Belessiotis, V., 2014. "A method for the dynamic testing and evaluation of the performance of combined solar thermal heat pump hot water systems," Applied Energy, Elsevier, vol. 114(C), pages 124-134.
    3. Christy E. Manyi-Loh & Mandlenkosi Sikhonza & Stephen Tangwe, 2021. "Linear Regression Analysis and Techno-Economic Viability of an Air Source Heat Pump Water Heater in a Residence at a University Campus," Energies, MDPI, vol. 14(8), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lloyd, Bob & Subbarao, Srikanth, 2009. "Development challenges under the Clean Development Mechanism (CDM)--Can renewable energy initiatives be put in place before peak oil?," Energy Policy, Elsevier, vol. 37(1), pages 237-245, January.
    2. Pan, Tze-Chin & Kao, Jehng-Jung & Wong, Chih-Po, 2012. "Effective solar radiation based benefit and cost analyses for solar water heater development in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1874-1882.
    3. Hamza, Neveen & Gilroy, Rose, 2011. "The challenge to UK energy policy: An ageing population perspective on energy saving measures and consumption," Energy Policy, Elsevier, vol. 39(2), pages 782-789, February.
    4. Rosas-Flores, Jorge Alberto & Rosas-Flores, Dionicio & Fernández Zayas, José Luis, 2016. "Potential energy saving in urban and rural households of Mexico by use of solar water heaters, using geographical information system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 243-252.
    5. Lloyd, Bob & Forest, Andrew S., 2010. "The transition to renewables: Can PV provide an answer to the peak oil and climate change challenges?," Energy Policy, Elsevier, vol. 38(11), pages 7378-7394, November.
    6. Jaisankar, S. & Radhakrishnan, T.K. & Sheeba, K.N., 2009. "Studies on heat transfer and friction factor characteristics of thermosyphon solar water heating system with helical twisted tapes," Energy, Elsevier, vol. 34(9), pages 1054-1064.
    7. Roulleau, T. & Lloyd, C.R., 2008. "International policy issues regarding solar water heating, with a focus on New Zealand," Energy Policy, Elsevier, vol. 36(6), pages 1843-1857, June.
    8. Sezai, I. & Aldabbagh, L.B.Y. & Atikol, U. & Hacisevki, H., 2005. "Performance improvement by using dual heaters in a storage-type domestic electric water-heater," Applied Energy, Elsevier, vol. 81(3), pages 291-305, July.

    More about this item

    Keywords

    Solar Hot water Heat pumps;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:36:y:2008:i:10:p:3807-3813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.