IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v199y2025ics0301421525000345.html
   My bibliography  Save this article

Multi-agent simulation of policies driving CCS technology in the cement industry

Author

Listed:
  • Yu, Biying
  • Fu, Jiahao
  • Dai, Ying

Abstract

Carbon capture and storage (CCS) technology has the potential to accelerate the cement industry's transition to low carbon, but it is still in the early demonstration stage. Strong policies are needed to promote its large-scale development. However, previous research was inadequate to identify the intertwined motivating factors behind the policy, which led to the policies being less effective. Therefore, this paper aims to explore the impact of policy on the diffusion of CCS in the cement industry by delving into the interaction mechanisms among agents, including the government, cement companies with and without CCS, CCS technology, and downstream sectors of the cement industry. An agent-based model is developed to simulate the effects of various policy measures on multi-agents’ behaviors and to examine CO2 emissions, costs, and CCS penetration rates. The results indicate that CCS diffusion will start in 2026, and a diffusion rate of 45.2% will be achieved by 2060, considering China's 30% investment subsidy ratio. The policy with the highest rate of CCS diffusion (62%) and the highest rate of emission reduction (87%) by 2060 provides for a 30% investment subsidy combined with a full quota charge. The 10% investment subsidy policy has the lowest unit cost of abatement (133 CNY/tCO2).

Suggested Citation

  • Yu, Biying & Fu, Jiahao & Dai, Ying, 2025. "Multi-agent simulation of policies driving CCS technology in the cement industry," Energy Policy, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:enepol:v:199:y:2025:i:c:s0301421525000345
    DOI: 10.1016/j.enpol.2025.114527
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421525000345
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2025.114527?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:199:y:2025:i:c:s0301421525000345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.