IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v184y2024ics030142152300469x.html
   My bibliography  Save this article

Solar analysis for an urban context from GIS to block-scale evaluations

Author

Listed:
  • Vecchi, Francesca
  • Berardi, Umberto

Abstract

Global and national policies are increasingly addressing the reduction of greenhouse gases (GHG) emissions and the diffusion of renewable energy resources. Building efficiency and decarbonisation pathways are often supported by promoting the installation of solar energy sources. Urban solar assessments are hence extremely useful to identify favourable locations and sizing of photovoltaic (PV) installations. This research aims to estimate the solar PV potential for a city-dense context. The case study is the downtown area of Toronto (Canada). While most of previous studies look at only one scale, this work adopts a multi-scalar methodology to model PV potential within the main residential building archetypes within the selected location. Rooftop GIS-based analysis estimates up to 26% satisfied electricity consumption for detached houses, and 7% for apartment buildings through polycrystalline PV. A following optimisation performed with the tool URBANopt shows solar block-scale best configurations and profitable financially ones. PV panels with net-metering achieve from 18% up to 41% self-sufficiency. The two assessments confirm that local solar resources can reduce energy dependency on the grid and promote the feasibility of energy communities. This study demonstrates how energy tools from GIS to block-scale are critical to support local administrations in urban planning and PV plans.

Suggested Citation

  • Vecchi, Francesca & Berardi, Umberto, 2024. "Solar analysis for an urban context from GIS to block-scale evaluations," Energy Policy, Elsevier, vol. 184(C).
  • Handle: RePEc:eee:enepol:v:184:y:2024:i:c:s030142152300469x
    DOI: 10.1016/j.enpol.2023.113884
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142152300469X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2023.113884?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. La Gennusa, Maria & Lascari, Giovanni & Rizzo, Gianfranco & Scaccianoce, Gianluca & Sorrentino, Giancarlo, 2011. "A model for predicting the potential diffusion of solar energy systems in complex urban environments," Energy Policy, Elsevier, vol. 39(9), pages 5335-5343, September.
    2. Iazzolino, Gianpaolo & Sorrentino, Nicola & Menniti, Daniele & Pinnarelli, Anna & De Carolis, Monica & Mendicino, Luca, 2022. "Energy communities and key features emerged from business models review," Energy Policy, Elsevier, vol. 165(C).
    3. Gabriele Lobaccaro & Malgorzata Maria Lisowska & Erika Saretta & Pierluigi Bonomo & Francesco Frontini, 2019. "A Methodological Analysis Approach to Assess Solar Energy Potential at the Neighborhood Scale," Energies, MDPI, vol. 12(18), pages 1-28, September.
    4. Hoicka, Christina E. & MacArthur, Julie L., 2018. "From tip to toes: Mapping community energy models in Canada and New Zealand," Energy Policy, Elsevier, vol. 121(C), pages 162-174.
    5. Li, Hui & Yi, Hongtao, 2014. "Multilevel governance and deployment of solar PV panels in U.S. cities," Energy Policy, Elsevier, vol. 69(C), pages 19-27.
    6. Byrd, Hugh & Ho, Anna & Sharp, Basil & Kumar-Nair, Nirmal, 2013. "Measuring the solar potential of a city and its implications for energy policy," Energy Policy, Elsevier, vol. 61(C), pages 944-952.
    7. Hofierka, Jaroslav & Kaňuk, Ján, 2009. "Assessment of photovoltaic potential in urban areas using open-source solar radiation tools," Renewable Energy, Elsevier, vol. 34(10), pages 2206-2214.
    8. Nicola Franzoi & Alessandro Prada & Sara Verones & Paolo Baggio, 2021. "Enhancing PV Self-Consumption through Energy Communities in Heating-Dominated Climates," Energies, MDPI, vol. 14(14), pages 1-17, July.
    9. Saad Odeh & Tri Hieu Nguyen, 2021. "Assessment Method to Identify the Potential of Rooftop PV Systems in the Residential Districts," Energies, MDPI, vol. 14(14), pages 1-11, July.
    10. Berardi, Umberto, 2017. "A cross-country comparison of the building energy consumptions and their trends," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 230-241.
    11. Aghamolaei, Reihaneh & Shamsi, Mohammad Haris & O’Donnell, James, 2020. "Feasibility analysis of community-based PV systems for residential districts: A comparison of on-site centralized and distributed PV installations," Renewable Energy, Elsevier, vol. 157(C), pages 793-808.
    12. Delmastro, Chiara & Mutani, Guglielmina & Corgnati, Stefano Paolo, 2016. "A supporting method for selecting cost-optimal energy retrofit policies for residential buildings at the urban scale," Energy Policy, Elsevier, vol. 99(C), pages 42-56.
    13. Nallapaneni Manoj Kumar & Aritra Ghosh & Shauhrat S. Chopra, 2020. "Power Resilience Enhancement of a Residential Electricity User Using Photovoltaics and a Battery Energy Storage System under Uncertainty Conditions," Energies, MDPI, vol. 13(16), pages 1-26, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Theodoridou, Ifigeneia & Karteris, Marinos & Mallinis, Georgios & Papadopoulos, Agis M. & Hegger, Manfred, 2012. "Assessment of retrofitting measures and solar systems' potential in urban areas using Geographical Information Systems: Application to a Mediterranean city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6239-6261.
    2. Vernay, Anne-Lorène & Sebi, Carine & Arroyo, Fabrice, 2023. "Energy community business models and their impact on the energy transition: Lessons learnt from France," Energy Policy, Elsevier, vol. 175(C).
    3. Ye, Yuxuan & Zhu, Rui & Yan, Jinyue & Lu, Lin & Wong, Man Sing & Luo, Wei & Chen, Min & Zhang, Fan & You, Linlin & Wang, Yafei & Qin, Zheng, 2023. "Planning the installation of building-integrated photovoltaic shading devices: A GIS-based spatiotemporal analysis and optimization approach," Renewable Energy, Elsevier, vol. 216(C).
    4. Byrne, John & Taminiau, Job & Kurdgelashvili, Lado & Kim, Kyung Nam, 2015. "A review of the solar city concept and methods to assess rooftop solar electric potential, with an illustrative application to the city of Seoul," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 830-844.
    5. Angelamaria Massimo & Marco Dell'Isola & Andrea Frattolillo & Giorgio Ficco, 2014. "Development of a Geographical Information System (GIS) for the Integration of Solar Energy in the Energy Planning of a Wide Area," Sustainability, MDPI, vol. 6(9), pages 1-15, August.
    6. Kim, Serena Y., 2020. "Institutional arrangements and airport solar PV," Energy Policy, Elsevier, vol. 143(C).
    7. Scott, Ryan P. & Scott, Tyler A., 2019. "Investing in collaboration for safety: Assessing grants to states for oil and gas distribution pipeline safety program enhancement," Energy Policy, Elsevier, vol. 124(C), pages 332-345.
    8. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    9. Formolli, M. & Kleiven, T. & Lobaccaro, G., 2023. "Assessing solar energy accessibility at high latitudes: A systematic review of urban spatial domains, metrics, and parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    10. Neij, Lena & Heiskanen, Eva & Strupeit, Lars, 2017. "The deployment of new energy technologies and the need for local learning," Energy Policy, Elsevier, vol. 101(C), pages 274-283.
    11. Zhong, Qing & Tong, Daoqin, 2020. "Spatial layout optimization for solar photovoltaic (PV) panel installation," Renewable Energy, Elsevier, vol. 150(C), pages 1-11.
    12. González-Limón, José Manuel & Pablo-Romero, María del P. & Sánchez-Braza, Antonio, 2013. "Understanding local adoption of tax credits to promote solar-thermal energy: Spanish municipalities' case," Energy, Elsevier, vol. 62(C), pages 277-284.
    13. Finn, Thomas & McKenzie, Paul, 2020. "A high-resolution suitability index for solar farm location in complex landscapes," Renewable Energy, Elsevier, vol. 158(C), pages 520-533.
    14. Bartłomiej Mroczek & Paweł Pijarski, 2022. "Machine Learning in Operating of Low Voltage Future Grid," Energies, MDPI, vol. 15(15), pages 1-30, July.
    15. D'Adamo, Idiano & Mammetti, Marco & Ottaviani, Dario & Ozturk, Ilhan, 2023. "Photovoltaic systems and sustainable communities: New social models for ecological transition. The impact of incentive policies in profitability analyses," Renewable Energy, Elsevier, vol. 202(C), pages 1291-1304.
    16. Zhou, Shijie & Cao, Sunliang, 2024. "Co-ordinations of ocean energy supported energy sharing between zero-emission cross-harbour buildings in the Greater Bay Area," Applied Energy, Elsevier, vol. 359(C).
    17. Panagiotis G. Kosmopoulos & Marios T. Mechilis & Panagiota Kaoura, 2022. "Solar Energy Production Planning in Antikythera: Adequacy Scenarios and the Effect of the Atmospheric Parameters," Energies, MDPI, vol. 15(24), pages 1-19, December.
    18. Ruth Winecoff & Michelle Graff, 2020. "Innovation in Financing Energy‐Efficient and Renewable Energy Upgrades: An Evaluation of Property Assessed Clean Energy for California Residences," Social Science Quarterly, Southwestern Social Science Association, vol. 101(7), pages 2555-2573, December.
    19. Zapata, Oscar, 2022. "Renewable Energy and Community Development," OSF Preprints tk59y, Center for Open Science.
    20. Tian, Shuai & Yang, Guoqiang & Du, Sihong & Zhuang, Dian & Zhu, Ke & Zhou, Xin & Jin, Xing & Ye, Yu & Li, Peixian & Shi, Xing, 2024. "An innovative method for evaluating the urban roof photovoltaic potential based on open-source satellite images," Renewable Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:184:y:2024:i:c:s030142152300469x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.