IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v148y2021ipbs0301421520306741.html
   My bibliography  Save this article

Investment analysis in privatization of National Iranian Drilling Company using systems dynamics and BWM technique

Author

Listed:
  • Nasirzadeh, Hossein
  • Amin-Tahmasbi, Hamzeh
  • Amoozad Khalili, Hossein

Abstract

In this study, using system dynamics approaches and multi-criteria decision-making, the investment analysis in the privatization of the National Iranian Drilling Company is investigated. For this purpose, key variables and factors influencing identification privatization and causal relationships between these variables are plotted in two causal loop diagram, stock and flow diagram in systems dynamics approach. Then the results are simulated in Vensim software from 2018 to 2025 and various investment scenarios for privatization are investigated. Also, using multi-criteria decision-making approach based on BWM technique, investment priorities were identified in each dimension of EFQM empowerment. The results of the system dynamics approach show that all aspects of privatization don't have the same impact on firm performance. The results of the present study will also contribute to the development of research literature in the field of privatization, and the proposed approach of the article can be used as a tool in the hands of managers and government officials to show them where and on what basis they should start privatization.

Suggested Citation

  • Nasirzadeh, Hossein & Amin-Tahmasbi, Hamzeh & Amoozad Khalili, Hossein, 2021. "Investment analysis in privatization of National Iranian Drilling Company using systems dynamics and BWM technique," Energy Policy, Elsevier, vol. 148(PB).
  • Handle: RePEc:eee:enepol:v:148:y:2021:i:pb:s0301421520306741
    DOI: 10.1016/j.enpol.2020.111963
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421520306741
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.111963?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brown, David J. & Earle, John S. & Telegdy, Almos, 2016. "Where does privatization work? Understanding the heterogeneity in estimated firm performance effects," Journal of Corporate Finance, Elsevier, vol. 41(C), pages 329-362.
    2. Andrade, Tiago, 2014. "The impact of regulation, privatization and competition on gas infrastructure investments," Energy, Elsevier, vol. 69(C), pages 82-85.
    3. Rezaei, Jafar, 2016. "Best-worst multi-criteria decision-making method: Some properties and a linear model," Omega, Elsevier, vol. 64(C), pages 126-130.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hendalianpour, Ayad & Liu, Peide & Amirghodsi, Sirous & Hamzehlou, Mohammad, 2022. "Designing a System Dynamics model to simulate criteria affecting oil and gas development contracts," Resources Policy, Elsevier, vol. 78(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James J. H. Liou & Perry C. Y. Liu & Huai-Wei Lo, 2020. "A Failure Mode Assessment Model Based on Neutrosophic Logic for Switched-Mode Power Supply Risk Analysis," Mathematics, MDPI, vol. 8(12), pages 1-19, December.
    2. Liang, Fuqi & Brunelli, Matteo & Rezaei, Jafar, 2020. "Consistency issues in the best worst method: Measurements and thresholds," Omega, Elsevier, vol. 96(C).
    3. Salimi, Negin & Rezaei, Jafar, 2018. "Evaluating firms’ R&D performance using best worst method," Evaluation and Program Planning, Elsevier, vol. 66(C), pages 147-155.
    4. Ravindra Singh Saluja & Varinder Singh, 2023. "Attribute-based characterization, coding, and selection of joining processes using a novel MADM approach," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 616-655, June.
    5. Guo, Mengzhuo & Zhang, Qingpeng & Liao, Xiuwu & Chen, Frank Youhua & Zeng, Daniel Dajun, 2021. "A hybrid machine learning framework for analyzing human decision-making through learning preferences," Omega, Elsevier, vol. 101(C).
    6. Junli Zhang & Guoteng Wang & Zheng Xu & Zheren Zhang, 2022. "A Comprehensive Evaluation Method and Strengthening Measures for AC/DC Hybrid Power Grids," Energies, MDPI, vol. 15(12), pages 1-20, June.
    7. Hamzeh Soltanali & Mehdi Khojastehpour & Siamak Kheybari, 2023. "Evaluating the critical success factors for maintenance management in agro-industries using multi-criteria decision-making techniques," Operations Management Research, Springer, vol. 16(2), pages 949-968, June.
    8. Yossi Hadad & Baruch Keren & Dima Alberg, 2023. "An Expert System for Ranking and Matching Electric Vehicles to Customer Specifications and Requirements," Energies, MDPI, vol. 16(11), pages 1-18, May.
    9. Vieira, Fabiana C. & Ferreira, Fernando A.F. & Govindan, Kannan & Ferreira, Neuza C.M.Q.F. & Banaitis, Audrius, 2022. "Measuring urban digitalization using cognitive mapping and the best worst method (BWM)," Technology in Society, Elsevier, vol. 71(C).
    10. Besharati Fard, Moein & Moradian, Parisa & Emarati, Mohammadreza & Ebadi, Mehdi & Gholamzadeh Chofreh, Abdoulmohammad & Klemeŝ, Jiří Jaromír, 2022. "Ground-mounted photovoltaic power station site selection and economic analysis based on a hybrid fuzzy best-worst method and geographic information system: A case study Guilan province," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    11. Negin Salimi & Jafar Rezaei, 2016. "Measuring efficiency of university-industry Ph.D. projects using best worst method," Scientometrics, Springer;Akadémiai Kiadó, vol. 109(3), pages 1911-1938, December.
    12. Chun-Chieh Tseng & Jun-Yi Zeng & Min-Liang Hsieh & Chih-Hung Hsu, 2022. "Analysis of Innovation Drivers of New and Old Kinetic Energy Conversion Using a Hybrid Multiple-Criteria Decision-Making Model in the Post-COVID-19 Era: A Chinese Case," Mathematics, MDPI, vol. 10(20), pages 1-25, October.
    13. Tavana, Madjid & Khalili Nasr, Arash & Mina, Hassan & Michnik, Jerzy, 2022. "A private sustainable partner selection model for green public-private partnerships and regional economic development," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    14. Jairo Ortega & Sarbast Moslem & János Tóth & Tamás Péter & Juan Palaguachi & Mario Paguay, 2020. "Using Best Worst Method for Sustainable Park and Ride Facility Location," Sustainability, MDPI, vol. 12(23), pages 1-18, December.
    15. Vineet Kaushik & Ashwani Kumar & Himanshu Gupta & Gaurav Dixit, 2022. "Modelling and prioritizing the factors for online apparel return using BWM approach," Electronic Commerce Research, Springer, vol. 22(3), pages 843-873, September.
    16. Amelia Bilbao-Terol & Mar Arenas-Parra & Raquel Quiroga-García & Celia Bilbao-Terol, 2022. "An extended best–worst multiple reference point method: application in the assessment of non-life insurance companies," Operational Research, Springer, vol. 22(5), pages 5323-5362, November.
    17. Sarbast Moslem & Muhammet Gul & Danish Farooq & Erkan Celik & Omid Ghorbanzadeh & Thomas Blaschke, 2020. "An Integrated Approach of Best-Worst Method (BWM) and Triangular Fuzzy Sets for Evaluating Driver Behavior Factors Related to Road Safety," Mathematics, MDPI, vol. 8(3), pages 1-20, March.
    18. Anchal Patil & Vipulesh Shardeo & Ashish Dwivedi & Noor Ulain Rizvi & Sanjoy Kumar Paul, 2024. "A framework to evaluate the temporary hospital locations in wake of COVID-19 pandemic: implications to healthcare operations," Operations Management Research, Springer, vol. 17(2), pages 438-452, June.
    19. Sahar Moazzeni & Sobhan Mostafayi Darmian & Lars Magnus Hvattum, 2023. "Multiple criteria decision making and robust optimization to design a development plan for small and medium-sized enterprises in the east of Iran," Operational Research, Springer, vol. 23(1), pages 1-32, March.
    20. Osei, Vivian & Bai, Chunguang & Asante-Darko, Disraeli & Quayson, Matthew, 2023. "Evaluating the barriers and drivers of adopting circular economy for improving sustainability in the mining industry," Resources Policy, Elsevier, vol. 86(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:148:y:2021:i:pb:s0301421520306741. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.