IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v81y2019icp874-885.html
   My bibliography  Save this article

Multifractal cross-correlations between the world oil and other financial markets in 2012–2017

Author

Listed:
  • Wa̧torek, Marcin
  • Drożdż, Stanisław
  • Oświȩcimka, Paweł
  • Stanuszek, Marek

Abstract

Statistical and multiscaling characteristics of WTI Crude Oil futures prices expressed in US dollar in relation to the most traded currencies as well as to gold futures and to the E-mini S&P500 futures prices on 5 min intra-day recordings in the period January 2012–December 2017 are studied. It is shown that in most of the cases the tails of return distributions of the considered financial instruments follow the inverse cubic power law. The only exception is the Russian ruble for which the distribution tail is heavier and scales with the exponent close to 2. From the perspective of multiscaling the analysed time series reveal the multifractal organization with the left-sided asymmetry of the corresponding singularity spectra. Even more, all the considered financial instruments appear to be multifractally cross-correlated with oil, especially on the level of medium-size fluctuations, as the multifractal cross-correlation analysis carried out by means of the multifractal cross-correlation analysis (MFCCA) and detrended cross-correlation coefficient ρq show. The degree of such cross-correlations is however varying among the financial instruments. The strongest ties to the oil characterize currencies of the oil extracting countries. Strength of this multifractal coupling appears to depend also on the oil market trend. In the analysed time period the level of cross-correlations systematically increases during the bear phase on the oil market and it saturates after the trend reversal in 1st half of 2016. The same methodology is also applied to identify possible causal relations between considered observables. Searching for some related asymmetry in the information flow mediating cross-correlations indicates that it was the oil price that led the Russian ruble over the time period here considered rather than vice versa.

Suggested Citation

  • Wa̧torek, Marcin & Drożdż, Stanisław & Oświȩcimka, Paweł & Stanuszek, Marek, 2019. "Multifractal cross-correlations between the world oil and other financial markets in 2012–2017," Energy Economics, Elsevier, vol. 81(C), pages 874-885.
  • Handle: RePEc:eee:eneeco:v:81:y:2019:i:c:p:874-885
    DOI: 10.1016/j.eneco.2019.05.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988319301604
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2019.05.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Oil market; Forex; Multifractality; Detrended cross-correlations; Information flow;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C46 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Specific Distributions
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • F31 - International Economics - - International Finance - - - Foreign Exchange
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:81:y:2019:i:c:p:874-885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.