IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v30y2008i5p2697-2704.html
   My bibliography  Save this article

The influence of temperature on spike probability in day-ahead power prices

Author

Listed:
  • Huisman, Ronald

Abstract

It is well known that day-ahead prices in power markets exhibit spikes and time-varying volatility. Spikes and extremely high volatility are the results of (short-term) frictions in demand and/or supply conditions. It is known that information on load or the reserve margin help to forecast spikes. However, these variables are not (timely) available for every market participant and this paper suggests to use temperature as a proxy. Interpreting the results from several switching-regimes models, the paper shows that the probability of spike occurrence increases when temperature deviates substantially from mean temperature levels.

Suggested Citation

  • Huisman, Ronald, 2008. "The influence of temperature on spike probability in day-ahead power prices," Energy Economics, Elsevier, vol. 30(5), pages 2697-2704, September.
  • Handle: RePEc:eee:eneeco:v:30:y:2008:i:5:p:2697-2704
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140-9883(08)00081-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mount, Timothy D. & Ning, Yumei & Cai, Xiaobin, 2006. "Predicting price spikes in electricity markets using a regime-switching model with time-varying parameters," Energy Economics, Elsevier, vol. 28(1), pages 62-80, January.
    2. Knittel, Christopher R. & Roberts, Michael R., 2005. "An empirical examination of restructured electricity prices," Energy Economics, Elsevier, vol. 27(5), pages 791-817, September.
    3. Christian Huurman & Francesco Ravazzolo & Chen Zhou, 2008. "The power of weather. Some empirical evidence on predicting day-ahead power prices through weather forecasts," Working Paper 2008/08, Norges Bank.
    4. Roberto Buizza & James W. Taylor, 2004. "A comparison of temperature density forecasts from GARCH and atmospheric models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(5), pages 337-355.
    5. Kosater, Peter, 2006. "On the impact of weather on German hourly power prices," Discussion Papers in Econometrics and Statistics 1/06, University of Cologne, Institute of Econometrics and Statistics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karakatsani, Nektaria V. & Bunn, Derek W., 2008. "Forecasting electricity prices: The impact of fundamentals and time-varying coefficients," International Journal of Forecasting, Elsevier, vol. 24(4), pages 764-785.
    2. Chi-Keung Woo, Ira Horowitz, Brian Horii, Ren Orans, and Jay Zarnikau, 2012. "Blowing in the Wind: Vanishing Payoffs of a Tolling Agreement for Natural-gas-fired Generation of Electricity in Texas," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    3. Karakatsani Nektaria V & Bunn Derek W., 2010. "Fundamental and Behavioural Drivers of Electricity Price Volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-42, September.
    4. Andreas Gerster, 2016. "Negative price spikes at power markets: the role of energy policy," Journal of Regulatory Economics, Springer, vol. 50(3), pages 271-289, December.
    5. Zachmann, Georg, 2013. "A stochastic fuel switching model for electricity prices," Energy Economics, Elsevier, vol. 35(C), pages 5-13.
    6. Woo, C.K. & Zarnikau, J. & Moore, J. & Horowitz, I., 2011. "Wind generation and zonal-market price divergence: Evidence from Texas," Energy Policy, Elsevier, vol. 39(7), pages 3928-3938, July.
    7. Joanna Janczura & Rafał Weron, 2012. "Efficient estimation of Markov regime-switching models: An application to electricity spot prices," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(3), pages 385-407, July.
    8. Ketterer, Janina C., 2014. "The impact of wind power generation on the electricity price in Germany," Energy Economics, Elsevier, vol. 44(C), pages 270-280.
    9. Christian Huurman & Francesco Ravazzolo & Chen Zhou, 2008. "The power of weather. Some empirical evidence on predicting day-ahead power prices through weather forecasts," Working Paper 2008/08, Norges Bank.
    10. Carlo Fezzi & Derek Bunn, 2010. "Structural Analysis of Electricity Demand and Supply Interactions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(6), pages 827-856, December.
    11. Timothy Christensen & Stan Hurn & Kenneth Lindsay, 2009. "It Never Rains but it Pours: Modeling the Persistence of Spikes in Electricity Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-48.
    12. Joanna Janczura, 2012. "Pricing electricity derivatives within a Markov regime-switching model," Papers 1203.5442, arXiv.org.
    13. Woo, C.K. & Sreedharan, P. & Hargreaves, J. & Kahrl, F. & Wang, J. & Horowitz, I., 2014. "A review of electricity product differentiation," Applied Energy, Elsevier, vol. 114(C), pages 262-272.
    14. Woo, C.K. & Chen, Y. & Olson, A. & Moore, J. & Schlag, N. & Ong, A. & Ho, T., 2017. "Electricity price behavior and carbon trading: New evidence from California," Applied Energy, Elsevier, vol. 204(C), pages 531-543.
    15. Zarnikau, J. & Tsai, C.H. & Woo, C.K., 2020. "Determinants of the wholesale prices of energy and ancillary services in the U.S. Midcontinent electricity market," Energy, Elsevier, vol. 195(C).
    16. Bosco, Bruno & Parisio, Lucia & Pelagatti, Matteo & Baldi, Fabio, 2007. "A Robust Multivariate Long Run Analysis of European Electricity Prices," International Energy Markets Working Papers 7438, Fondazione Eni Enrico Mattei (FEEM).
    17. Chi-Keung Woo & Ira Horowitz & Jay Zarnikau & Jack Moore & Brendan Schneiderman & Tony Ho & Eric Leung, 2016. "What Moves the Ex Post Variable Profit of Natural-Gas-Fired Generation in California?," The Energy Journal, , vol. 37(3), pages 29-57, July.
    18. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    19. Karakatsani, Nektaria V. & Bunn, Derek W., 2008. "Intra-day and regime-switching dynamics in electricity price formation," Energy Economics, Elsevier, vol. 30(4), pages 1776-1797, July.
    20. Per B. Solibakke, 2022. "Step‐ahead spot price densities using daily synchronously reported prices and wind forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 17-42, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:30:y:2008:i:5:p:2697-2704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.