IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v141y2025ics0140988324007497.html
   My bibliography  Save this article

How can AI reduce carbon emissions? Insights from a quasi-natural experiment using generalized random forest

Author

Listed:
  • Feng, Lingbing
  • Qi, Jiajun
  • Zheng, Yuhao

Abstract

This study examines the impact of a recent regional artificial intelligence pilot zone (AIPZ) policy in China on firms' carbon performance using a quasi-natural experiment. Using the Difference-in-Differences (DID) methodology, the findings reveal that the AIPZ policy significantly reduces firms' carbon emissions. This effect is most pronounced for firms with high talent levels, positive media sentiment, and strong internal control, while heavily polluting firms experience a relatively minor effect. A variable importance analysis using the generalized random forest approach identifies return on assets (ROA) and Tobin's Q as significant contributors to the variation in firms' responses. Specifically, when ROA is negative, the treatment effect is relatively large and increases slowly. In contrast, when ROA is positive, the treatment effect decreases rapidly, showing a zero-boundary effect. Additionally, Tobin's Q exhibits an inverted U-shaped relationship with the treatment effect. The findings of this study offer valuable insights for policymakers in China and beyond, highlighting the importance of considering firm-specific characteristics to achieve effective and sustainable environmental management alongside economic development.

Suggested Citation

  • Feng, Lingbing & Qi, Jiajun & Zheng, Yuhao, 2025. "How can AI reduce carbon emissions? Insights from a quasi-natural experiment using generalized random forest," Energy Economics, Elsevier, vol. 141(C).
  • Handle: RePEc:eee:eneeco:v:141:y:2025:i:c:s0140988324007497
    DOI: 10.1016/j.eneco.2024.108040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988324007497
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2024.108040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:141:y:2025:i:c:s0140988324007497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.