IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v139y2024ics0140988324005838.html
   My bibliography  Save this article

Decoding the influence of servitization on green transformation in manufacturing firms: The moderating effect of artificial intelligence

Author

Listed:
  • Song, Yanwu
  • Niu, Niu
  • Song, Xinyi
  • Zhang, Bin

Abstract

This research addresses three crucial dimensions in operations management: the servitization of manufacturing, the utilization of artificial intelligence (AI) platforms, and green transformation. Employing the by-production method, we construct a metric for green transformation applicable to listed firms. Our comprehensive analytical framework integrates the resource-based view and information asymmetry theories, enabling systematic investigation into the influence of manufacturing servitization on firms' green transformation. In addition, we examine the moderating effect of AI platforms on the execution of servitization strategies. The empirical foundation of our study is an annually updated dataset of 554 manufacturing firms listed on China's A-share market. Our findings reveal a strong positive correlation between the deployment of servitization strategies and the green transformation of firms. This association withstands multiple robustness tests, including core variable substitution, outlier removal, and adjustments in clustering standard errors. Our research uncovers notable nuances. The effect of servitization on green total factor productivity is more visible for eastern and central China firms. Also, state-owned enterprises demonstrate a more conspicuous influence from servitization strategies. However, we observe a slight diminishing of this effect in firms audited by the Big Four. An essential contribution of our study is the illumination of the role AI platforms play in enhancing the efficacy of servitization. These AI platforms facilitate the creation of tailored solutions that curtail resource wastage, thus amplifying the positive effect of servitization strategies on green transformation.

Suggested Citation

  • Song, Yanwu & Niu, Niu & Song, Xinyi & Zhang, Bin, 2024. "Decoding the influence of servitization on green transformation in manufacturing firms: The moderating effect of artificial intelligence," Energy Economics, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:eneeco:v:139:y:2024:i:c:s0140988324005838
    DOI: 10.1016/j.eneco.2024.107875
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988324005838
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2024.107875?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:139:y:2024:i:c:s0140988324005838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.