IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v129y2024ics0140988323007193.html
   My bibliography  Save this article

Carbon emission efficiency of China's logistics industry: Measurement, evolution mechanism, and promotion countermeasures

Author

Listed:
  • Ding, Heping
  • Liu, Conghu

Abstract

Improving carbon emission efficiency of the logistics industry (LCEE) is important in achieving carbon neutrality. We examine the carbon emissions of 31 provinces and cities in China that aim to reduce emissions and increase efficiency in the logistics industry. We construct the evaluation index system of LCEE, using the Super-EBM-unexpected model to measure it. Moreover, the global Malmquist–Luenberger index and the spatial autocorrelation model are used to analyze its temporal and spatial evolution mechanisms and identify its influencing factors via the spatial Durbin model. The results show a very low average LCEE value and a decreasing gradient distribution in space for China. The average pure technical efficiency is the main driving force for improving LCEE. Environmental regulation and the residents' consumption level positively affect LCEE. However, economic level, industrial structure, government input, and energy intensity have a negative impact. Countermeasures and recommendations are proposed to improve LCEE and provide theoretical and methodological support for its research and management. The study provides implications for policymaking related to ecosystem protection and sustainable development in the logistics industry.

Suggested Citation

  • Ding, Heping & Liu, Conghu, 2024. "Carbon emission efficiency of China's logistics industry: Measurement, evolution mechanism, and promotion countermeasures," Energy Economics, Elsevier, vol. 129(C).
  • Handle: RePEc:eee:eneeco:v:129:y:2024:i:c:s0140988323007193
    DOI: 10.1016/j.eneco.2023.107221
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988323007193
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2023.107221?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liangen Zeng & Haiyan Lu & Yenping Liu & Yang Zhou & Haoyu Hu, 2019. "Analysis of Regional Differences and Influencing Factors on China’s Carbon Emission Efficiency in 2005–2015," Energies, MDPI, vol. 12(16), pages 1-21, August.
    2. Ray, Subhash C & Desli, Evangelia, 1997. "Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries: Comment," American Economic Review, American Economic Association, vol. 87(5), pages 1033-1039, December.
    3. Luc Anselin & Rodolfo Bongiovanni & Jess Lowenberg-DeBoer, 2004. "A Spatial Econometric Approach to the Economics of Site-Specific Nitrogen Management in Corn Production," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(3), pages 675-687.
    4. Song, Yao-yao & Li, Jing-jing & Wang, Jin-li & Yang, Guo-liang & Chen, Zhenling, 2022. "Eco-efficiency of Chinese transportation industry: A DEA approach with non-discretionary input," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    5. R. Ramanathan, 2002. "Combining indicators of energy consumption and CO 2 emissions: a cross-country comparison," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 17(3), pages 214-227.
    6. Zhou, P. & Ang, B.W. & Han, J.Y., 2010. "Total factor carbon emission performance: A Malmquist index analysis," Energy Economics, Elsevier, vol. 32(1), pages 194-201, January.
    7. Kaoru Tone, 2011. "Slacks-Based Measure of Efficiency," International Series in Operations Research & Management Science, in: William W. Cooper & Lawrence M. Seiford & Joe Zhu (ed.), Handbook on Data Envelopment Analysis, chapter 0, pages 195-209, Springer.
    8. Wang, Guofeng & Deng, Xiangzheng & Wang, Jingyu & Zhang, Fan & Liang, Shiqi, 2019. "Carbon emission efficiency in China: A spatial panel data analysis," China Economic Review, Elsevier, vol. 56(C), pages 1-1.
    9. J. Elhorst, 2010. "Applied Spatial Econometrics: Raising the Bar," Spatial Economic Analysis, Taylor & Francis Journals, vol. 5(1), pages 9-28.
    10. Zhang, Ren-Long & Liu, Xiao-Hong, 2021. "Evaluating ecological efficiency of Chinese industrial enterprise," Renewable Energy, Elsevier, vol. 178(C), pages 679-691.
    11. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiongzhi Liu & Jun Hao, 2022. "Regional Differences and Influencing Factors of Carbon Emission Efficiency in the Yangtze River Economic Belt," Sustainability, MDPI, vol. 14(8), pages 1-15, April.
    2. Jiao Wang & Zhenliang Liao & Hui Sun, 2023. "Analysis of Carbon Emission Efficiency in the Yellow River Basin in China: Spatiotemporal Differences and Influencing Factors," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    3. Juanjuan Tian & Xiaoqian Song & Jinsuo Zhang, 2022. "Spatial-Temporal Pattern and Driving Factors of Carbon Efficiency in China: Evidence from Panel Data of Urban Governance," Energies, MDPI, vol. 15(7), pages 1-24, March.
    4. Minyoung Yang & Jinsoo Kim, 2022. "A Critical Review of the Definition and Estimation of Carbon Efficiency," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    5. Wang, Q.W. & Zhou, P. & Shen, N. & Wang, S.S., 2013. "Measuring carbon dioxide emission performance in Chinese provinces: A parametric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 324-330.
    6. Cheng, Xiaomei & Bjørndal, Endre & Lien, Gudbrand & Bjørndal, Mette, 2015. "Productivity Development for Norwegian Electricity Distribution Companies 2004-2013," Discussion Papers 2015/27, Norwegian School of Economics, Department of Business and Management Science.
    7. Bo Li & Jing Liu & Qian Liu & Muhammad Mohiuddin, 2022. "The Effects of Broadband Infrastructure on Carbon Emission Efficiency of Resource-Based Cities in China: A Quasi-Natural Experiment from the “Broadband China” Pilot Policy," IJERPH, MDPI, vol. 19(11), pages 1-27, May.
    8. Federico Belotti & Giuseppe Ilardi & Andrea Piano Mortari, 2019. "Estimation of Stochastic Frontier Panel Data Models with Spatial Inefficiency," CEIS Research Paper 459, Tor Vergata University, CEIS, revised 30 May 2019.
    9. Wang, Jianda & Dong, Kangyin & Sha, Yezhou & Yan, Cheng, 2022. "Envisaging the carbon emissions efficiency of digitalization: The case of the internet economy for China," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    10. Zhang, Wei & Liu, Xuemeng & Zhao, Shikuan & Tang, Tian, 2024. "Does green finance agglomeration improve carbon emission performance in China? A perspective of spatial spillover," Applied Energy, Elsevier, vol. 358(C).
    11. Zhou, Di & Huang, Qing & Chong, Zhaohui, 2022. "Analysis on the effect and mechanism of land misallocation on carbon emissions efficiency: Evidence from China," Land Use Policy, Elsevier, vol. 121(C).
    12. Cristian Barra & Roberto Zotti, 2016. "Measuring Efficiency in Higher Education: An Empirical Study Using a Bootstrapped Data Envelopment Analysis," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 22(1), pages 11-33, February.
    13. Ajayi, Victor & Anaya, Karim & Pollitt, Michael, 2022. "Incentive regulation, productivity growth and environmental effects: the case of electricity networks in Great Britain," Energy Economics, Elsevier, vol. 115(C).
    14. Chen, Xiang & Chen, Yong & Huang, Wenli & Zhang, Xuping, 2023. "A new Malmquist-type green total factor productivity measure: An application to China," Energy Economics, Elsevier, vol. 117(C).
    15. Chen, Zhongfei & Barros, Carlos Pestana & Borges, Maria Rosa, 2015. "A Bayesian stochastic frontier analysis of Chinese fossil-fuel electricity generation companies," Energy Economics, Elsevier, vol. 48(C), pages 136-144.
    16. Cheng, Xiaomei & Bjørndal, Endre & Bjørndal, Mette, 2015. "Malmquist Productivity Analysis based on StoNED," Discussion Papers 2015/25, Norwegian School of Economics, Department of Business and Management Science.
    17. Agostino, Mariarosaria & Nifo, Annamaria & Trivieri, Francesco & Vecchione, Gaetano, 2016. "Total factor productivity heterogeneity: channelling the impact of institutions," MPRA Paper 72759, University Library of Munich, Germany.
    18. Sheng, Pengfei & Li, Jun & Zhai, Mengxin & Huang, Shoujun, 2020. "Coupling of economic growth and reduction in carbon emissions at the efficiency level: Evidence from China," Energy, Elsevier, vol. 213(C).
    19. Tae Hoon Oum & Katsuhiro Yamaguchi & Yuichiro Yoshida, 2011. "Efficiency Measurement Theory and its Application to Airport Benchmarking," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 13, Edward Elgar Publishing.
    20. Yan Li & Catherine Waddams Price, 2012. "Effect of Regulatory Reform on the Efficiency of Mobile Telecommunications," Working Paper series, University of East Anglia, Centre for Competition Policy (CCP) 2012-01, Centre for Competition Policy, University of East Anglia, Norwich, UK..

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:129:y:2024:i:c:s0140988323007193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.