IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v83y1995i1p21-38.html
   My bibliography  Save this article

An exact algorithm for orthogonal 2-D cutting problems using guillotine cuts

Author

Listed:
  • Christofides, Nicos
  • Hadjiconstantinou, Eleni

Abstract

No abstract is available for this item.

Suggested Citation

  • Christofides, Nicos & Hadjiconstantinou, Eleni, 1995. "An exact algorithm for orthogonal 2-D cutting problems using guillotine cuts," European Journal of Operational Research, Elsevier, vol. 83(1), pages 21-38, May.
  • Handle: RePEc:eee:ejores:v:83:y:1995:i:1:p:21-38
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0377-2217(93)E0277-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicos Christofides & Charles Whitlock, 1977. "An Algorithm for Two-Dimensional Cutting Problems," Operations Research, INFORMS, vol. 25(1), pages 30-44, February.
    2. Hinxman, A. I., 1980. "The trim-loss and assortment problems: A survey," European Journal of Operational Research, Elsevier, vol. 5(1), pages 8-18, July.
    3. Oliveira, JoseFernando & Ferreira, JoseSoeiro, 1990. "An improved version of Wang's algorithm for two-dimensional cutting problems," European Journal of Operational Research, Elsevier, vol. 44(2), pages 256-266, January.
    4. P. Y. Wang, 1983. "Two Algorithms for Constrained Two-Dimensional Cutting Stock Problems," Operations Research, INFORMS, vol. 31(3), pages 573-586, June.
    5. P. C. Gilmore & R. E. Gomory, 1965. "Multistage Cutting Stock Problems of Two and More Dimensions," Operations Research, INFORMS, vol. 13(1), pages 94-120, February.
    6. Dyckhoff, Harald, 1990. "A typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 44(2), pages 145-159, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. François Clautiaux & Antoine Jouglet & Aziz Moukrim, 2013. "A New Graph-Theoretical Model for the Guillotine-Cutting Problem," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 72-86, February.
    2. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    3. E G Birgin & J M Martínez & W F Mascarenhas & D P Ronconi, 2006. "Method of sentinels for packing items within arbitrary convex regions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(6), pages 735-746, June.
    4. Lodi, Andrea & Martello, Silvano & Monaci, Michele, 2002. "Two-dimensional packing problems: A survey," European Journal of Operational Research, Elsevier, vol. 141(2), pages 241-252, September.
    5. Mhand Hifi, 2004. "Dynamic Programming and Hill-Climbing Techniques for Constrained Two-Dimensional Cutting Stock Problems," Journal of Combinatorial Optimization, Springer, vol. 8(1), pages 65-84, March.
    6. Silva, Elsa & Oliveira, José Fernando & Silveira, Tiago & Mundim, Leandro & Carravilla, Maria Antónia, 2023. "The Floating-Cuts model: a general and flexible mixed-integer programming model for non-guillotine and guillotine rectangular cutting problems," Omega, Elsevier, vol. 114(C).
    7. Mhand Hifi & Catherine Roucairol, 2001. "Approximate and Exact Algorithms for Constrained (Un) Weighted Two-dimensional Two-staged Cutting Stock Problems," Journal of Combinatorial Optimization, Springer, vol. 5(4), pages 465-494, December.
    8. Douglas Nogueira Nascimento & Adriana Cristina Cherri & José Fernando Oliveira, 2022. "The two-dimensional cutting stock problem with usable leftovers: mathematical modelling and heuristic approaches," Operational Research, Springer, vol. 22(5), pages 5363-5403, November.
    9. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    10. Hadjiconstantinou, Eleni & Iori, Manuel, 2007. "A hybrid genetic algorithm for the two-dimensional single large object placement problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1150-1166, December.
    11. Song, X. & Chu, C.B. & Lewis, R. & Nie, Y.Y. & Thompson, J., 2010. "A worst case analysis of a dynamic programming-based heuristic algorithm for 2D unconstrained guillotine cutting," European Journal of Operational Research, Elsevier, vol. 202(2), pages 368-378, April.
    12. Reinaldo Morabito & Vitória Pureza, 2010. "A heuristic approach based on dynamic programming and and/or-graph search for the constrained two-dimensional guillotine cutting problem," Annals of Operations Research, Springer, vol. 179(1), pages 297-315, September.
    13. Wu, Yu-Liang & Huang, Wenqi & Lau, Siu-chung & Wong, C. K. & Young, Gilbert H., 2002. "An effective quasi-human based heuristic for solving the rectangle packing problem," European Journal of Operational Research, Elsevier, vol. 141(2), pages 341-358, September.
    14. Krzysztof Fleszar, 2016. "An Exact Algorithm for the Two-Dimensional Stage-Unrestricted Guillotine Cutting/Packing Decision Problem," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 703-720, November.
    15. Kim, Kap Hwan & Kim, Jae-Boum, 2002. "Determining load patterns for the delivery of assembly components under JIT systems," International Journal of Production Economics, Elsevier, vol. 77(1), pages 25-38, May.
    16. Pedroso, João Pedro, 2020. "Heuristics for packing semifluids," European Journal of Operational Research, Elsevier, vol. 282(3), pages 823-834.
    17. Leung, Stephen C.H. & Zhang, Defu & Sim, Kwang Mong, 2011. "A two-stage intelligent search algorithm for the two-dimensional strip packing problem," European Journal of Operational Research, Elsevier, vol. 215(1), pages 57-69, November.
    18. Vera Neidlein & Andrèa C. G. Vianna & Marcos N. Arenales & Gerhard Wäscher, 2008. "The Two-Dimensional, Rectangular, Guillotineable-Layout Cutting Problem with a Single Defect," FEMM Working Papers 08035, Otto-von-Guericke University Magdeburg, Faculty of Economics and Management.
    19. Fabio Furini & Enrico Malaguti & Dimitri Thomopulos, 2016. "Modeling Two-Dimensional Guillotine Cutting Problems via Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 736-751, November.
    20. Celia Glass & Jeroen Oostrum, 2010. "Bun splitting: a practical cutting stock problem," Annals of Operations Research, Springer, vol. 179(1), pages 15-33, September.
    21. Andrea Lodi & Silvano Martello & Daniele Vigo, 2004. "Models and Bounds for Two-Dimensional Level Packing Problems," Journal of Combinatorial Optimization, Springer, vol. 8(3), pages 363-379, September.
    22. Velasco, André Soares & Uchoa, Eduardo, 2019. "Improved state space relaxation for constrained two-dimensional guillotine cutting problems," European Journal of Operational Research, Elsevier, vol. 272(1), pages 106-120.
    23. Wei, Lijun & Lim, Andrew, 2015. "A bidirectional building approach for the 2D constrained guillotine knapsack packing problem," European Journal of Operational Research, Elsevier, vol. 242(1), pages 63-71.
    24. Yanasse, Horacio Hideki & Pinto Lamosa, Maria Jose, 2007. "An integrated cutting stock and sequencing problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1353-1370, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hadjiconstantinou, Eleni & Christofides, Nicos, 1995. "An exact algorithm for general, orthogonal, two-dimensional knapsack problems," European Journal of Operational Research, Elsevier, vol. 83(1), pages 39-56, May.
    2. Yanasse, Horacio Hideki & Pinto Lamosa, Maria Jose, 2007. "An integrated cutting stock and sequencing problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1353-1370, December.
    3. Parada Daza, Victor & Gomes de Alvarenga, Arlindo & de Diego, Jose, 1995. "Exact solutions for constrained two-dimensional cutting problems," European Journal of Operational Research, Elsevier, vol. 84(3), pages 633-644, August.
    4. Morabito, Reinaldo & Arenales, Marcos N., 1996. "Staged and constrained two-dimensional guillotine cutting problems: An AND/OR-graph approach," European Journal of Operational Research, Elsevier, vol. 94(3), pages 548-560, November.
    5. Felix Prause & Kai Hoppmann-Baum & Boris Defourny & Thorsten Koch, 2021. "The maximum diversity assortment selection problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 521-554, June.
    6. Mhand Hifi, 2004. "Dynamic Programming and Hill-Climbing Techniques for Constrained Two-Dimensional Cutting Stock Problems," Journal of Combinatorial Optimization, Springer, vol. 8(1), pages 65-84, March.
    7. Melega, Gislaine Mara & de Araujo, Silvio Alexandre & Jans, Raf, 2018. "Classification and literature review of integrated lot-sizing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 1-19.
    8. Morabito, Reinaldo & Belluzzo, Luciano, 2007. "Optimising the cutting of wood fibre plates in the hardboard industry," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1405-1420, December.
    9. Martins, Gustavo H.A. & Dell, Robert F., 2008. "Solving the pallet loading problem," European Journal of Operational Research, Elsevier, vol. 184(2), pages 429-440, January.
    10. Hifi, Mhand, 1997. "The DH/KD algorithm: a hybrid approach for unconstrained two-dimensional cutting problems," European Journal of Operational Research, Elsevier, vol. 97(1), pages 41-52, February.
    11. de Armas, Jesica & Miranda, Gara & León, Coromoto, 2012. "Improving the efficiency of a best-first bottom-up approach for the Constrained 2D Cutting Problem," European Journal of Operational Research, Elsevier, vol. 219(2), pages 201-213.
    12. Hadjiconstantinou, Eleni & Iori, Manuel, 2007. "A hybrid genetic algorithm for the two-dimensional single large object placement problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1150-1166, December.
    13. Chen, C. S. & Lee, S. M. & Shen, Q. S., 1995. "An analytical model for the container loading problem," European Journal of Operational Research, Elsevier, vol. 80(1), pages 68-76, January.
    14. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    15. Silva, Elsa & Oliveira, José Fernando & Silveira, Tiago & Mundim, Leandro & Carravilla, Maria Antónia, 2023. "The Floating-Cuts model: a general and flexible mixed-integer programming model for non-guillotine and guillotine rectangular cutting problems," Omega, Elsevier, vol. 114(C).
    16. Mhand Hifi & Catherine Roucairol, 2001. "Approximate and Exact Algorithms for Constrained (Un) Weighted Two-dimensional Two-staged Cutting Stock Problems," Journal of Combinatorial Optimization, Springer, vol. 5(4), pages 465-494, December.
    17. Ortmann, Frank G. & Ntene, Nthabiseng & van Vuuren, Jan H., 2010. "New and improved level heuristics for the rectangular strip packing and variable-sized bin packing problems," European Journal of Operational Research, Elsevier, vol. 203(2), pages 306-315, June.
    18. Fayard, Didier & Zissimopoulos, Vassilis, 1995. "An approximation algorithm for solving unconstrained two-dimensional knapsack problems," European Journal of Operational Research, Elsevier, vol. 84(3), pages 618-632, August.
    19. Riehme, Jan & Scheithauer, Guntram & Terno, Johannes, 1996. "The solution of two-stage guillotine cutting stock problems having extremely varying order demands," European Journal of Operational Research, Elsevier, vol. 91(3), pages 543-552, June.
    20. Reinaldo Morabito & Vitória Pureza, 2010. "A heuristic approach based on dynamic programming and and/or-graph search for the constrained two-dimensional guillotine cutting problem," Annals of Operations Research, Springer, vol. 179(1), pages 297-315, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:83:y:1995:i:1:p:21-38. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.