IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v34y1988i2p221-230.html
   My bibliography  Save this article

Single machine scheduling to minimize weighted earliness subject to no tardy jobs

Author

Listed:
  • Chand, Suresh
  • Schneeberger, Hans

Abstract

No abstract is available for this item.

Suggested Citation

  • Chand, Suresh & Schneeberger, Hans, 1988. "Single machine scheduling to minimize weighted earliness subject to no tardy jobs," European Journal of Operational Research, Elsevier, vol. 34(2), pages 221-230, March.
  • Handle: RePEc:eee:ejores:v:34:y:1988:i:2:p:221-230
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0377-2217(88)90356-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guner, Ertan & Erol, Serpil & Tani, Kazuo, 1998. "One machine scheduling to minimize the maximum earliness with minimum number of tardy jobs," International Journal of Production Economics, Elsevier, vol. 55(2), pages 213-219, July.
    2. Vincent T’kindt & Karima Bouibede-Hocine & Carl Esswein, 2007. "Counting and enumeration complexity with application to multicriteria scheduling," Annals of Operations Research, Springer, vol. 153(1), pages 215-234, September.
    3. Ouhimmou, M. & D'Amours, S. & Beauregard, R. & Ait-Kadi, D. & Chauhan, S. Singh, 2008. "Furniture supply chain tactical planning optimization using a time decomposition approach," European Journal of Operational Research, Elsevier, vol. 189(3), pages 952-970, September.
    4. Asano, Makoto & Ohta, Hiroshi, 1999. "Single machine scheduling to meet due times under shutdown constraints," International Journal of Production Economics, Elsevier, vol. 60(1), pages 537-547, April.
    5. Feng Li & Zhi-Long Chen & Zhi-Long Chen, 2017. "Integrated Production, Inventory and Delivery Problems: Complexity and Algorithms," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 232-250, May.
    6. Chen, Wei-Yang & Sheen, Gwo-Ji, 2007. "Single-machine scheduling with multiple performance measures: Minimizing job-dependent earliness and tardiness subject to the number of tardy jobs," International Journal of Production Economics, Elsevier, vol. 109(1-2), pages 214-229, September.
    7. Wan, Guohua & Yen, Benjamin P.-C., 2009. "Single machine scheduling to minimize total weighted earliness subject to minimal number of tardy jobs," European Journal of Operational Research, Elsevier, vol. 195(1), pages 89-97, May.
    8. Choobineh, F. Fred & Mohebbi, Esmail & Khoo, Hansen, 2006. "A multi-objective tabu search for a single-machine scheduling problem with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 175(1), pages 318-337, November.
    9. Seo, Jong Hwa & Kim, Chae-Bogk & Lee, Dong Hoon, 2001. "Minimizing mean squared deviation of completion times with maximum tardiness constraint," European Journal of Operational Research, Elsevier, vol. 129(1), pages 95-104, February.
    10. Gross, Eitan, 2016. "On the Bellman’s principle of optimality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 217-221.
    11. Qi, Xiangton & Tu, Feng-Sheng, 1998. "Scheduling a single machine to minimize earliness penalties subject to the SLK due-date determination method," European Journal of Operational Research, Elsevier, vol. 105(3), pages 502-508, March.
    12. Li, Kunpeng & Sivakumar, Appa Iyer & Ganesan, Viswanath Kumar, 2008. "Complexities and algorithms for synchronized scheduling of parallel machine assembly and air transportation in consumer electronics supply chain," European Journal of Operational Research, Elsevier, vol. 187(2), pages 442-455, June.
    13. Bachtenkirch, David & Bock, Stefan, 2022. "Finding efficient make-to-order production and batch delivery schedules," European Journal of Operational Research, Elsevier, vol. 297(1), pages 133-152.
    14. Asano, Makoto & Ohta, Hiroshi, 1996. "Single machine scheduling using dominance relation to minimize earliness subject to ready and due times," International Journal of Production Economics, Elsevier, vol. 44(1-2), pages 35-43, June.
    15. Pathumnakul, Supachai & Egbelu, Pius J., 2005. "Algorithm for minimizing weighted earliness penalty in single-machine problem," European Journal of Operational Research, Elsevier, vol. 161(3), pages 780-796, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:34:y:1988:i:2:p:221-230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.