IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v323y2025i3p1024-1039.html
   My bibliography  Save this article

Business cycle and realized losses in the consumer credit industry

Author

Listed:
  • Distaso, Walter
  • Roccazzella, Francesco
  • Vrins, Frédéric

Abstract

We investigate the determinants of losses given default (LGD) in consumer credit. Utilizing a unique dataset encompassing over 6 million observations of Italian consumer credit over a long time span, we find that macroeconomic and social (MS) variables significantly enhance the forecasting performance at both individual and portfolio levels, improving R2 by up to 10 percentage points. Our findings are robust across various model specifications. Non-linear forecast combination schemes employing neural networks consistently rank among the top performers in terms of mean absolute error, RMSE, R2, and model confidence sets in every tested scenario. Notably, every model that belongs to the superior set systematically includes MS variables. The relationship between expected LGD and macro predictors, as revealed by accumulated local effects plots and Shapley values, supports the intuition that lower real activity, a rising cost-of-debt to GDP ratio, and heightened economic uncertainty are associated with higher LGD for consumer credit. Our results on the influence of MS variables complement and slightly differ from those of related papers. These discrepancies can be attributed to the comprehensive nature of our database – spanning broader dimensions in space, time, sectors, and types of consumer credit – the variety of models utilized, and the analyses conducted.

Suggested Citation

  • Distaso, Walter & Roccazzella, Francesco & Vrins, Frédéric, 2025. "Business cycle and realized losses in the consumer credit industry," European Journal of Operational Research, Elsevier, vol. 323(3), pages 1024-1039.
  • Handle: RePEc:eee:ejores:v:323:y:2025:i:3:p:1024-1039
    DOI: 10.1016/j.ejor.2024.12.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724009688
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.12.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:323:y:2025:i:3:p:1024-1039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.