IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v323y2025i2p671-685.html
   My bibliography  Save this article

Learning from the aggregated optimum: Managing port wine inventory in the face of climate risks

Author

Listed:
  • Pahr, Alexander
  • Grunow, Martin
  • Amorim, Pedro

Abstract

Port wine stocks ameliorate during storage, facilitating product differentiation according to age. This induces a trade-off between immediate revenues and further maturation. Varying climate conditions in the limited supply region lead to stochastic purchase prices for wine grapes. Decision makers must integrate recurring purchasing, production, and issuance decisions. Because stocks from different age classes can be blended to create final products, the solution space increases exponentially in the number of age classes. We model the problem of managing port wine inventory as a Markov decision process, considering decay as an additional source of uncertainty. For small problems, we derive general management strategies from the long-run behavior of the optimal policy. Our solution approach for otherwise intractable large problems, therefore, first aggregates age classes to create a tractable problem representation. We then use machine learning to train tree-based decision rules that reproduce the optimal aggregated policy and the enclosed management strategies. The derived rules are scaled back to solve the original problem. Learning from the aggregated optimum outperforms benchmark rules by 21.4% in annual profits (while leaving a 2.8%-gap to an upper bound). For an industry case, we obtain a 17.4%-improvement over current practices. Our research provides distinct strategies for how producers can mitigate climate risks. The purchasing policy dynamically adapts to climate-dependent price fluctuations. Uncertainties are met with lower production of younger products, whereas strategic surpluses of older stocks ensure high production of older products. Moreover, a wide spread in the age classes used for blending reduces decay risk exposure.

Suggested Citation

  • Pahr, Alexander & Grunow, Martin & Amorim, Pedro, 2025. "Learning from the aggregated optimum: Managing port wine inventory in the face of climate risks," European Journal of Operational Research, Elsevier, vol. 323(2), pages 671-685.
  • Handle: RePEc:eee:ejores:v:323:y:2025:i:2:p:671-685
    DOI: 10.1016/j.ejor.2024.11.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724009378
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.11.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:323:y:2025:i:2:p:671-685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.