IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v323y2025i1p297-308.html
   My bibliography  Save this article

A machine learning approach for solution space reduction in aircraft disruption recovery

Author

Listed:
  • Rashedi, Navid
  • Sankey, Nolan
  • Vaze, Vikrant
  • Wei, Keji

Abstract

Aircraft recovery, a critical step in airline operations recovery, aims to minimize the cost of disrupted aircraft schedules. The exact methods for aircraft recovery are computationally expensive and operationally infeasible in practice. Heuristics and hybrid approaches offer faster solutions but have inconsistent solution quality, often leading to large losses. We propose a supervised machine learning approach to accelerate aircraft recovery by pruning the solution space of the optimization problem. It leverages similarities with previously solved problem instances through an offline model-training phase, identifies components of the optimal solutions for new problem instances in the online phase, and links them to the optimization model to rapidly generate high-quality solutions. Computational results, from multiple historical disruption instances for a large US airline, demonstrate that this approach significantly outperforms exact methods on computational runtime while producing similarly high-quality solutions. It also outperforms existing heuristics due to its ability to prune solution spaces in a more principled manner, leading to higher quality solutions in similarly short runtimes. For a runtime budget of two minutes, our approach provides a solution within 1.5% of the true optimal cost, resulting in an average daily saving of over $390,000 compared to all existing approaches. The main drivers of these improvements are explainable in terms of key airline operational metrics and are validated through extensive sensitivity and robustness tests.

Suggested Citation

  • Rashedi, Navid & Sankey, Nolan & Vaze, Vikrant & Wei, Keji, 2025. "A machine learning approach for solution space reduction in aircraft disruption recovery," European Journal of Operational Research, Elsevier, vol. 323(1), pages 297-308.
  • Handle: RePEc:eee:ejores:v:323:y:2025:i:1:p:297-308
    DOI: 10.1016/j.ejor.2024.11.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724008944
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.11.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:323:y:2025:i:1:p:297-308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.