Author
Listed:
- Wu, Qiong
- Wang, Wei
- Zhang, Sainan
- Xu, Huifu
Abstract
In this paper, we consider a bi-attribute decision making problem where the decision maker’s (DM’s) objective is to maximize the expected utility of outcomes with two attributes but where the true utility function which captures the DM’s risk preference is ambiguous. To tackle this ambiguity, we propose a maximin bi-attribute utility preference robust optimization (BUPRO) model where the optimal decision is based on the worst-case utility function in an ambiguity set of plausible utility functions constructed using partially available information such as the DM’s specific preference for certain lotteries. Specifically, we consider a BUPRO model with two attributes, where the DM’s risk attitude is bivariate risk-averse and the ambiguity set is defined by a linear system of inequalities represented by the Lebesgue–Stieltjes integrals of the DM’s utility functions. To solve the inner infinite-dimensional minimization problem, we propose a continuous piecewise linear approximation approach to approximate the DM’s unknown true utility. Unlike the univariate case, we partition the domain of the utility function into a set of small non-overlapping rectangles and then divide each rectangle into two triangles by either the main diagonal (Type-1) or the counter diagonal (Type-2). The inner minimization problem based on the piecewise linear utility function can be reformulated as a mixed-integer linear program and the outer maximization problem can be solved efficiently by the derivative-free method. In the case that all the small triangles are partitioned either in Type-1 or in Type-2, the inner minimization can be formulated as a finite dimensional linear program and the overall maximin as a single mixed-integer program. To quantify the approximation errors, we derive, under some mild conditions, the error bound for the difference between the BUPRO model and the approximate BUPRO model in terms of the ambiguity set, the optimal value and the optimal solutions. Finally, we carry out some numerical tests to examine the performance of the proposed models and computational schemes. The results demonstrate the efficiency of the computational schemes and highlight the stability of the BUPRO model against data perturbations.
Suggested Citation
Wu, Qiong & Wang, Wei & Zhang, Sainan & Xu, Huifu, 2025.
"Bi-attribute utility preference robust optimization: A continuous piecewise linear approximation approach,"
European Journal of Operational Research, Elsevier, vol. 323(1), pages 170-191.
Handle:
RePEc:eee:ejores:v:323:y:2025:i:1:p:170-191
DOI: 10.1016/j.ejor.2024.11.001
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:323:y:2025:i:1:p:170-191. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.