IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v322y2025i2p427-447.html
   My bibliography  Save this article

A new branch-and-cut approach for integrated planning in additive manufacturing

Author

Listed:
  • Zipfel, Benedikt
  • Tamke, Felix
  • Kuttner, Leopold

Abstract

In recent years, there has been considerable interest in the transformative potential of additive manufacturing (AM) since it allows for producing highly customizable and complex components while reducing lead times and costs. The rise of AM for traditional and new business models enforces the need for efficient planning procedures for AM facilities. In this area, the assignment and sequencing of components to be built by an AM machine, also called a 3D printer, is a complex challenge combining two combinatorial problems: The first decision involves the grouping of parts into production batches, akin to the well-known bin packing problem. Subsequently, the second problem pertains to the scheduling of these batches onto the available machines, which corresponds to a parallel machine scheduling problem. For minimizing makespan, this paper proposes a new branch-and-cut algorithm for integrated planning for unrelated parallel machines. The algorithm is based on combinatorial Benders decomposition: The scheduling problem is considered in the master problem, while the feasibility of an obtained solution with respect to the packing problem is checked in the sub-problem. Current state-of-the-art techniques are extended to solve the orthogonal packing with rotation and used to speed up the solution of the sub-problem. Extensive computational tests on existing and new benchmark instances show the algorithm’s superior performance, improving the makespan by 18.7% on average, with improvements reaching up to 97.6% for large problems compared to an existing integrated mixed-integer programming model.

Suggested Citation

  • Zipfel, Benedikt & Tamke, Felix & Kuttner, Leopold, 2025. "A new branch-and-cut approach for integrated planning in additive manufacturing," European Journal of Operational Research, Elsevier, vol. 322(2), pages 427-447.
  • Handle: RePEc:eee:ejores:v:322:y:2025:i:2:p:427-447
    DOI: 10.1016/j.ejor.2024.10.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724008439
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.10.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:322:y:2025:i:2:p:427-447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.