IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v322y2025i1p237-253.html
   My bibliography  Save this article

A novel robust optimization model for nonlinear Support Vector Machine

Author

Listed:
  • Maggioni, Francesca
  • Spinelli, Andrea

Abstract

In this paper, we present new optimization models for Support Vector Machine (SVM), with the aim of separating data points in two or more classes. The classification task is handled by means of nonlinear classifiers induced by kernel functions and consists in two consecutive phases: first, a classical SVM model is solved, followed by a linear search procedure, aimed at minimizing the total number of misclassified data points. To address the problem of data perturbations and protect the model against uncertainty, we construct bounded-by-norm uncertainty sets around each training data and apply robust optimization techniques. We rigorously derive the robust counterpart extension of the deterministic SVM approach, providing computationally tractable reformulations. Closed-form expressions for the bounds of the uncertainty sets in the feature space have been formulated for typically used kernel functions. Finally, extensive numerical results on real-world datasets show the benefits of the proposed robust approach in comparison with various SVM alternatives in the machine learning literature.

Suggested Citation

  • Maggioni, Francesca & Spinelli, Andrea, 2025. "A novel robust optimization model for nonlinear Support Vector Machine," European Journal of Operational Research, Elsevier, vol. 322(1), pages 237-253.
  • Handle: RePEc:eee:ejores:v:322:y:2025:i:1:p:237-253
    DOI: 10.1016/j.ejor.2024.12.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724009561
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.12.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:322:y:2025:i:1:p:237-253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.