IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v321y2025i3p814-836.html
   My bibliography  Save this article

Stochastic dual dynamic programming for optimal power flow problems under uncertainty

Author

Listed:
  • Kiszka, Adriana
  • Wozabal, David

Abstract

Planning in the power sector has to take into account the physical laws of alternating current (AC) power flows as well as uncertainty in the data of the problems, both of which greatly complicate optimal decision making. We propose a computationally tractable framework to solve multi-stage stochastic optimal power flow (OPF) problems in AC power systems. Our approach uses recent results on dual convex semi-definite programming (SDP) relaxations of OPF problems in order to adapt the stochastic dual dynamic programming (SDDP) algorithm for problems with a Markovian structure. We show that the usual SDDP lower bound remains valid and that the algorithm converges to a globally optimal policy of the stochastic AC-OPF problem as long as the SDP relaxations are tight. To test the practical viability of our approach, we set up a case study of a storage siting, sizing, and operations problem. We show that the convex SDP relaxation of the stochastic problem is usually tight and discuss ways to obtain near-optimal physically feasible solutions when this is not the case. The algorithm finds a physically feasible policy with an optimality gap of 3% and yields a significant added value of 27% over a rolling deterministic policy, which leads to overly optimistic policies and underinvestment in flexibility. This suggests that the common industry practice of assuming direct current and deterministic problems should be reevaluated by considering models that incorporate realistic AC flows and stochastic elements in the data as potentially more realistic alternatives.

Suggested Citation

  • Kiszka, Adriana & Wozabal, David, 2025. "Stochastic dual dynamic programming for optimal power flow problems under uncertainty," European Journal of Operational Research, Elsevier, vol. 321(3), pages 814-836.
  • Handle: RePEc:eee:ejores:v:321:y:2025:i:3:p:814-836
    DOI: 10.1016/j.ejor.2024.09.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724007483
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.09.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:321:y:2025:i:3:p:814-836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.