Author
Listed:
- Shi, Yu
- Charles, Vincent
- Zhu, Joe
Abstract
Ensuring financial sustainability is imperative for a financial institution's overall stability. To mitigate the risk of bank failure amid financial crises, effective management of financial sustainability performance becomes paramount. This study introduces a comprehensive framework for the accurate and efficient quantification, indexing, and evaluation of financial sustainability within the American banking industry. Our approach begins by conceptualizing financial sustainability as a multi-stage, multifactor structure. We construct a composite index through a three-stage network data envelopment analysis (DEA) and subsequently develop a random forest classification model to predict financial sustainability outcomes. The classification model attains an average testing recall rate of 84.34 %. Additionally, we employ SHapley Additive exPlanations (SHAP) to scrutinize the impacts of contextual variables on financial sustainability performance across various substages and the overall banking process, as well as to improve the interpretability and transparency of the classification results. SHAP results reveal the significance and effects of contextual variables, and noteworthy differences in contextual impacts emerge among different banking substages. Specifically, loans and leases, interest income, total liabilities, total assets, and market capitalization positively contribute to the deposit stage; revenue to assets positively influences the loan stage; and revenue per share positively affects the profitability stage. This study serves the managerial objective of assisting banks in capturing financial sustainability and identifying potential sources of unsustainability. By unveiling the “black box” of financial sustainability and deciphering its internal dynamics and interactions, banks can enhance their ability to monitor and control financial sustainability performance more effectively.
Suggested Citation
Shi, Yu & Charles, Vincent & Zhu, Joe, 2025.
"Bank financial sustainability evaluation: Data envelopment analysis with random forest and Shapley additive explanations,"
European Journal of Operational Research, Elsevier, vol. 321(2), pages 614-630.
Handle:
RePEc:eee:ejores:v:321:y:2025:i:2:p:614-630
DOI: 10.1016/j.ejor.2024.09.030
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:321:y:2025:i:2:p:614-630. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.