IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v318y2024i2p575-591.html
   My bibliography  Save this article

Which algorithm to select in sports timetabling?

Author

Listed:
  • Van Bulck, David
  • Goossens, Dries
  • Clarner, Jan-Patrick
  • Dimitsas, Angelos
  • Fonseca, George H.G.
  • Lamas-Fernandez, Carlos
  • Lester, Martin Mariusz
  • Pedersen, Jaap
  • Phillips, Antony E.
  • Rosati, Roberto Maria

Abstract

Any sports competition needs a timetable, specifying when and where teams meet each other. The recent International Timetabling Competition (ITC2021) on sports timetabling showed that, although it is possible to develop general algorithms, the performance of each algorithm varies considerably over the problem instances. This paper provides a problem type analysis for sports timetabling, resulting in powerful insights into the strengths and weaknesses of eight state-of-the-art algorithms. Based on machine learning techniques, we propose an algorithm selection system that predicts which algorithm is likely to perform best based on the type of competition and constraints being used (i.e., the problem type) in a given sports timetabling problem instance. Furthermore, we visualize how the problem type relates to algorithm performance, providing insights and possibilities to further enhance several algorithms. Finally, we assess the empirical hardness of the instances. Our results are based on large computational experiments involving about 50 years of CPU time on more than 500 newly generated problem instances.

Suggested Citation

  • Van Bulck, David & Goossens, Dries & Clarner, Jan-Patrick & Dimitsas, Angelos & Fonseca, George H.G. & Lamas-Fernandez, Carlos & Lester, Martin Mariusz & Pedersen, Jaap & Phillips, Antony E. & Rosati,, 2024. "Which algorithm to select in sports timetabling?," European Journal of Operational Research, Elsevier, vol. 318(2), pages 575-591.
  • Handle: RePEc:eee:ejores:v:318:y:2024:i:2:p:575-591
    DOI: 10.1016/j.ejor.2024.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724004338
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.06.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Timo Berthold & Andrea Lodi & Domenico Salvagnin, 2019. "Ten years of feasibility pump, and counting," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(1), pages 1-14, March.
    2. Martin Mariusz Lester, 2022. "Pseudo-Boolean optimisation for RobinX sports timetabling," Journal of Scheduling, Springer, vol. 25(3), pages 287-299, June.
    3. David S. Johnson & Cecilia R. Aragon & Lyle A. McGeoch & Catherine Schevon, 1989. "Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning," Operations Research, INFORMS, vol. 37(6), pages 865-892, December.
    4. Celso C. Ribeiro & Sebastián Urrutia, 2012. "Scheduling the Brazilian Soccer Tournament: Solution Approach and Practice," Interfaces, INFORMS, vol. 42(3), pages 260-272, June.
    5. Stephan Westphal, 2014. "Scheduling the German Basketball League," Interfaces, INFORMS, vol. 44(5), pages 498-508, October.
    6. Dries Goossens & Frits Spieksma, 2009. "Scheduling the Belgian Soccer League," Interfaces, INFORMS, vol. 39(2), pages 109-118, April.
    7. Van Bulck, David & Goossens, Dries, 2023. "The international timetabling competition on sports timetabling (ITC2021)," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1249-1267.
    8. Ceschia, Sara & Di Gaspero, Luca & Schaerf, Andrea, 2023. "Educational timetabling: Problems, benchmarks, and state-of-the-art results," European Journal of Operational Research, Elsevier, vol. 308(1), pages 1-18.
    9. Leo Lopes & Kate Smith-Miles, 2013. "Generating Applicable Synthetic Instances for Branch Problems," Operations Research, INFORMS, vol. 61(3), pages 563-577, June.
    10. George L. Nemhauser & Michael A. Trick, 1998. "Scheduling A Major College Basketball Conference," Operations Research, INFORMS, vol. 46(1), pages 1-8, February.
    11. Markus Wagner & Marius Lindauer & Mustafa Mısır & Samadhi Nallaperuma & Frank Hutter, 2018. "A case study of algorithm selection for the traveling thief problem," Journal of Heuristics, Springer, vol. 24(3), pages 295-320, June.
    12. Van Bulck, David & Goossens, Dries & Schönberger, Jörn & Guajardo, Mario, 2020. "RobinX: A three-field classification and unified data format for round-robin sports timetabling," European Journal of Operational Research, Elsevier, vol. 280(2), pages 568-580.
    13. Guillermo Durán & Mario Guajardo & Facundo Gutiérrez & Javier Marenco & Denis Sauré & Gonzalo Zamorano, 2021. "Scheduling the Main Professional Football League of Argentina," Interfaces, INFORMS, vol. 51(5), pages 361-372, September.
    14. Roberto Maria Rosati & Matteo Petris & Luca Di Gaspero & Andrea Schaerf, 2022. "Multi-neighborhood simulated annealing for the sports timetabling competition ITC2021," Journal of Scheduling, Springer, vol. 25(3), pages 301-319, June.
    15. Arnaud Coster & Nysret Musliu & Andrea Schaerf & Johannes Schoisswohl & Kate Smith-Miles, 2022. "Algorithm selection and instance space analysis for curriculum-based course timetabling," Journal of Scheduling, Springer, vol. 25(1), pages 35-58, February.
    16. David Bulck & Dries R. Goossens & Frits C. R. Spieksma, 2019. "Scheduling a non-professional indoor football league: a tabu search based approach," Annals of Operations Research, Springer, vol. 275(2), pages 715-730, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Van Bulck, David & Goossens, Dries, 2023. "The international timetabling competition on sports timetabling (ITC2021)," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1249-1267.
    2. van Doornmalen, Jasper & Hojny, Christopher & Lambers, Roel & Spieksma, Frits C.R., 2023. "Integer programming models for round robin tournaments," European Journal of Operational Research, Elsevier, vol. 310(1), pages 24-33.
    3. Guillermo Durán, 2021. "Sports scheduling and other topics in sports analytics: a survey with special reference to Latin America," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 125-155, April.
    4. Van Bulck, David & Goossens, Dries, 2023. "A traditional Benders’ approach to sports timetabling," European Journal of Operational Research, Elsevier, vol. 307(2), pages 813-826.
    5. Durán, Guillermo & Durán, Santiago & Marenco, Javier & Mascialino, Federico & Rey, Pablo A., 2019. "Scheduling Argentina’s professional basketball leagues: A variation on the Travelling Tournament Problem," European Journal of Operational Research, Elsevier, vol. 275(3), pages 1126-1138.
    6. Dries Goossens & Jeroen Beliën, 2023. "Teaching Integer Programming by Scheduling the Belgian Soccer League," INFORMS Transactions on Education, INFORMS, vol. 23(3), pages 164-172, May.
    7. Li, Miao & Davari, Morteza & Goossens, Dries, 2023. "Multi-league sports scheduling with different leagues sizes," European Journal of Operational Research, Elsevier, vol. 307(1), pages 313-327.
    8. Guillermo Durán & Mario Guajardo & Facundo Gutiérrez & Javier Marenco & Denis Sauré & Gonzalo Zamorano, 2021. "Scheduling the Main Professional Football League of Argentina," Interfaces, INFORMS, vol. 51(5), pages 361-372, September.
    9. Ceschia, Sara & Di Gaspero, Luca & Schaerf, Andrea, 2023. "Educational timetabling: Problems, benchmarks, and state-of-the-art results," European Journal of Operational Research, Elsevier, vol. 308(1), pages 1-18.
    10. David Van Bulck & Dries Goossens & Jo¨rn Scho¨nberger & Mario Guajardo, 2020. "An Instance Data Repository for the Round-robin Sports Timetabling Problem," Management and Labour Studies, XLRI Jamshedpur, School of Business Management & Human Resources, vol. 45(2), pages 184-200, May.
    11. Fernando Alarcón & Guillermo Durán & Mario Guajardo & Jaime Miranda & Hugo Muñoz & Luis Ramírez & Mario Ramírez & Denis Sauré & Matías Siebert & Sebastián Souyris & Andrés Weintraub & Rodrigo Wolf-Yad, 2017. "Operations Research Transforms the Scheduling of Chilean Soccer Leagues and South American World Cup Qualifiers," Interfaces, INFORMS, vol. 47(1), pages 52-69, February.
    12. Durán, Guillermo & Guajardo, Mario & Sauré, Denis, 2017. "Scheduling the South American Qualifiers to the 2018 FIFA World Cup by integer programming," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1109-1115.
    13. Lim, A. & Rodrigues, B. & Zhang, X., 2006. "A simulated annealing and hill-climbing algorithm for the traveling tournament problem," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1459-1478, November.
    14. Roberto Maria Rosati & Matteo Petris & Luca Di Gaspero & Andrea Schaerf, 2022. "Multi-neighborhood simulated annealing for the sports timetabling competition ITC2021," Journal of Scheduling, Springer, vol. 25(3), pages 301-319, June.
    15. Lim, A. & Rodrigues, B. & Zhang, X., 2006. "Scheduling sports competitions at multiple venues--Revisited," European Journal of Operational Research, Elsevier, vol. 175(1), pages 171-186, November.
    16. Goller, Daniel & Krumer, Alex, 2020. "Let's meet as usual: Do games played on non-frequent days differ? Evidence from top European soccer leagues," European Journal of Operational Research, Elsevier, vol. 286(2), pages 740-754.
    17. Yi, Xiajie & Goossens, Dries & Nobibon, Fabrice Talla, 2020. "Proactive and reactive strategies for football league timetabling," European Journal of Operational Research, Elsevier, vol. 282(2), pages 772-785.
    18. Ahmed Ghoniem & Agha Iqbal Ali & Mohammed Al-Salem & Wael Khallouli, 2017. "Prescriptive analytics for FIFA World Cup lodging capacity planning," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1183-1194, October.
    19. Guillermo Durán & Mario Guajardo & Rodrigo Wolf-Yadlin, 2012. "Operations Research Techniques for Scheduling Chile's Second Division Soccer League," Interfaces, INFORMS, vol. 42(3), pages 273-285, June.
    20. Bergantiños, Gustavo & Moreno-Ternero, Juan D., 2022. "Monotonicity in sharing the revenues from broadcasting sports leagues," European Journal of Operational Research, Elsevier, vol. 297(1), pages 338-346.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:318:y:2024:i:2:p:575-591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.