IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v313y2024i2p767-775.html
   My bibliography  Save this article

Optimal pure strategies for a discrete search game

Author

Listed:
  • Bui, Thuy
  • Lidbetter, Thomas
  • Lin, Kyle Y.

Abstract

Consider a two-person zero-sum search game between a Hider and a Searcher. The Hider chooses to hide in one of n discrete locations (or “boxes”) and the Searcher chooses a search sequence specifying which order to look in these boxes until finding the Hider. A search at box i takes ti time units and finds the Hider—if hidden there—independently with probability qi, for i=1,…,n. The Searcher wants to minimize the expected total time needed to find the Hider, while the Hider wants to maximize it. It is shown in the literature that the Searcher has an optimal search strategy that mixes up to n distinct search sequences with appropriate probabilities. This paper investigates the existence of optimal pure strategies for the Searcher—a single deterministic search sequence that achieves the optimal expected total search time regardless of where the Hider hides. We identify several cases in which the Searcher has an optimal pure strategy, and several cases in which such optimal pure strategy does not exist. An optimal pure search strategy has significant practical value because the Searcher does not need to randomize their actions and will avoid second guessing themselves if the chosen search sequence from an optimal mixed strategy does not turn out well.

Suggested Citation

  • Bui, Thuy & Lidbetter, Thomas & Lin, Kyle Y., 2024. "Optimal pure strategies for a discrete search game," European Journal of Operational Research, Elsevier, vol. 313(2), pages 767-775.
  • Handle: RePEc:eee:ejores:v:313:y:2024:i:2:p:767-775
    DOI: 10.1016/j.ejor.2023.08.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723006707
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.08.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. M. Roberts & J. C. Gittins, 1978. "The search for an intelligent evader: Strategies for searcher and evader in the two‐region problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 25(1), pages 95-106, March.
    2. Steve Alpern & Thomas Lidbetter, 2013. "Mining Coal or Finding Terrorists: The Expanding Search Paradigm," Operations Research, INFORMS, vol. 61(2), pages 265-279, April.
    3. Lidbetter, Thomas, 2013. "Search games with multiple hidden objects," LSE Research Online Documents on Economics 55103, London School of Economics and Political Science, LSE Library.
    4. Herbert Gintis, 2014. "The Bounds of Reason: Game Theory and the Unification of the Behavioral Sciences," Economics Books, Princeton University Press, edition 1, number 10248.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yolmeh, Abdolmajid & Baykal-Gürsoy, Melike, 2021. "Weighted network search games with multiple hidden objects and multiple search teams," European Journal of Operational Research, Elsevier, vol. 289(1), pages 338-349.
    2. Robbert Fokkink & Ken Kikuta & David Ramsey, 2017. "The search value of a set," Annals of Operations Research, Springer, vol. 256(1), pages 63-73, September.
    3. Hellerstein, Lisa & Lidbetter, Thomas, 2023. "A game theoretic approach to a problem in polymatroid maximization," European Journal of Operational Research, Elsevier, vol. 305(2), pages 979-988.
    4. Steve Alpern & Thomas Lidbetter, 2019. "Approximate solutions for expanding search games on general networks," Annals of Operations Research, Springer, vol. 275(2), pages 259-279, April.
    5. Robbert Fokkink & Thomas Lidbetter & László A. Végh, 2019. "On Submodular Search and Machine Scheduling," Management Science, INFORMS, vol. 44(4), pages 1431-1449, November.
    6. Lidbetter, Thomas, 2020. "Search and rescue in the face of uncertain threats," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1153-1160.
    7. Steve Alpern, 2017. "Hide-and-Seek Games on a Network, Using Combinatorial Search Paths," Operations Research, INFORMS, vol. 65(5), pages 1207-1214, October.
    8. Alpern, Steve & Lidbetter, Thomas, 2020. "Search and Delivery Man Problems: When are depth-first paths optimal?," European Journal of Operational Research, Elsevier, vol. 285(3), pages 965-976.
    9. Lidbetter, Thomas & Lin, Kyle Y., 2019. "Searching for multiple objects in multiple locations," European Journal of Operational Research, Elsevier, vol. 278(2), pages 709-720.
    10. Bastián Bahamondes & Mathieu Dahan, 2024. "Hide-and-Seek Game with Capacitated Locations and Imperfect Detection," Decision Analysis, INFORMS, vol. 21(2), pages 110-124, June.
    11. Garrec, Tristan & Scarsini, Marco, 2020. "Search for an immobile hider on a stochastic network," European Journal of Operational Research, Elsevier, vol. 283(2), pages 783-794.
    12. Garrec, Tristan, 2019. "Continuous patrolling and hiding games," European Journal of Operational Research, Elsevier, vol. 277(1), pages 42-51.
    13. Ben Hermans & Roel Leus & Jannik Matuschke, 2022. "Exact and Approximation Algorithms for the Expanding Search Problem," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 281-296, January.
    14. Jarke-Neuert, Johannes & Perino, Grischa & Schwickert, Henrike, 2021. "Free-Riding for Future: Field Experimental Evidence of Strategic Substitutability in Climate Protest," SocArXiv sh6dm, Center for Open Science.
    15. Wettergren, Thomas A., 2021. "Game-based modeling of independent searchers who share a common goal," Applied Mathematics and Computation, Elsevier, vol. 391(C).
    16. Angelopoulos, Spyros & Lidbetter, Thomas, 2020. "Competitive search in a network," European Journal of Operational Research, Elsevier, vol. 286(2), pages 781-790.
    17. Vassili Kolokoltsov, 2017. "The Evolutionary Game of Pressure (or Interference), Resistance and Collaboration," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 915-944, November.
    18. Steve Alpern & Thomas Lidbetter, 2014. "Searching a Variable Speed Network," Mathematics of Operations Research, INFORMS, vol. 39(3), pages 697-711, August.
    19. Liu, Dehai & Xiao, Xingzhi & Li, Hongyi & Wang, Weiguo, 2015. "Historical evolution and benefit–cost explanation of periodical fluctuation in coal mine safety supervision: An evolutionary game analysis framework," European Journal of Operational Research, Elsevier, vol. 243(3), pages 974-984.
    20. Steven M. Shechter & Farhad Ghassemi & Yasin Gocgun & Martin L. Puterman, 2015. "Technical Note—Trading Off Quick versus Slow Actions in Optimal Search," Operations Research, INFORMS, vol. 63(2), pages 353-362, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:313:y:2024:i:2:p:767-775. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.