IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v292y2021i1p43-59.html
   My bibliography  Save this article

A new algorithm for resource-constrained project scheduling with breadth and depth of skills

Author

Listed:
  • Snauwaert, Jakob
  • Vanhoucke, Mario

Abstract

This paper addresses a multi-skilled extension of the resource-constrained project scheduling problem (RCPSP). Although a handful of papers dealt with the multi-skilled RCPSP (MSRCPSP), little to no attention is given to the ideal levels of skills for multi-skilled resources. In this paper, skills are measured along two dimensions known as breadth and depth. In a project environment, the breadth of a resource is perceived as the amount of skills an employee masters. The depth of a skill is the efficiency level at which work can be performed by a resource that masters that skill. The MSRCPSP with breadth and depth consists of scheduling activities with skill requirements and assigning multi-skilled resources to those activities. To be able to efficiently solve the MSRCPSP, a genetic algorithm is developed. Using the created activity schedules and resources assignments, the best workforce characteristics are analysed. Key aspects in this analysis are the breadth and depth. The problem-specific procedure combines a new representation, a new crossover and tailor-made local searches. Computational experiments measure the impact of different multi-skilled resources and their efficiency levels on the makespan of the project.

Suggested Citation

  • Snauwaert, Jakob & Vanhoucke, Mario, 2021. "A new algorithm for resource-constrained project scheduling with breadth and depth of skills," European Journal of Operational Research, Elsevier, vol. 292(1), pages 43-59.
  • Handle: RePEc:eee:ejores:v:292:y:2021:i:1:p:43-59
    DOI: 10.1016/j.ejor.2020.10.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720309085
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.10.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min Wang & Guoshan Liu & Xinyu Lin, 2022. "Dynamic Optimization of the Multi-Skilled Resource-Constrained Project Scheduling Problem with Uncertainty in Resource Availability," Mathematics, MDPI, vol. 10(17), pages 1-20, August.
    2. Snauwaert, Jakob & Vanhoucke, Mario, 2023. "A classification and new benchmark instances for the multi-skilled resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 307(1), pages 1-19.
    3. Meya Haroune & Cheikh Dhib & Emmanuel Neron & Ameur Soukhal & Hafed Mohamed Babou & Mohamedade Farouk Nanne, 2023. "Multi-project scheduling problem under shared multi-skill resource constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 194-235, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:292:y:2021:i:1:p:43-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.