IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v280y2020i3p988-1007.html
   My bibliography  Save this article

As simple as possible but not simpler in Multiple Criteria Decision Aiding: the robust-stochastic level dependent Choquet integral approach

Author

Listed:
  • Arcidiacono, Sally Giuseppe
  • Corrente, Salvatore
  • Greco, Salvatore

Abstract

The level dependent Choquet integral has been proposed to handle decision making problems in which the importance and the interaction of criteria may depend on the level of the alternatives’ evaluations. This integral is based on a level dependent capacity, which is a family of single capacities associated to each level of evaluation for the considered criteria. We present two possible formulations of the level dependent capacity where importance and interaction of criteria are constant inside each one of the subintervals in which the interval of evaluations for considered criteria is split or vary with continuity inside the whole interval of evaluations. Since, in general, there is not only one but many level dependent capacities compatible with the preference information provided by the Decision Maker, we propose to take into account all of them by using the Robust Ordinal Regression (ROR) and the Stochastic Multicriteria Acceptability Analysis (SMAA). On one hand, ROR defines a necessary preference relation (if an alternative a is at least as good as an alternative b for all compatible level dependent capacities), and a possible preference relation (if a is at least as good as b for at least one compatible level dependent capacity). On the other hand, considering a random sampling of compatible level dependent capacities, SMAA gives the probability that each alternative reaches a certain ranking position as well as the probability that an alternative is preferred to another. A real-world decision problem on rankings of universities is provided to illustrate the proposed methodology.

Suggested Citation

  • Arcidiacono, Sally Giuseppe & Corrente, Salvatore & Greco, Salvatore, 2020. "As simple as possible but not simpler in Multiple Criteria Decision Aiding: the robust-stochastic level dependent Choquet integral approach," European Journal of Operational Research, Elsevier, vol. 280(3), pages 988-1007.
  • Handle: RePEc:eee:ejores:v:280:y:2020:i:3:p:988-1007
    DOI: 10.1016/j.ejor.2019.07.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719306447
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.07.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ru, Zice & Liu, Jiapeng & Kadziński, Miłosz & Liao, Xiuwu, 2022. "Bayesian ordinal regression for multiple criteria choice and ranking," European Journal of Operational Research, Elsevier, vol. 299(2), pages 600-620.
    2. Arcidiacono, Sally Giuseppe & Corrente, Salvatore & Greco, Salvatore, 2021. "Robust stochastic sorting with interacting criteria hierarchically structured," European Journal of Operational Research, Elsevier, vol. 292(2), pages 735-754.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:280:y:2020:i:3:p:988-1007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.