IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v280y2020i1p46-58.html
   My bibliography  Save this article

Semidefinite programming lower bounds and branch-and-bound algorithms for the quadratic minimum spanning tree problem

Author

Listed:
  • Guimarães, Dilson Almeida
  • da Cunha, Alexandre Salles
  • Pereira, Dilson Lucas

Abstract

In this paper, we investigate Semidefinite Programming (SDP) lower bounds for the Quadratic Minimum Spanning Tree Problem (QMSTP). Two SDP lower bounding approaches are introduced here. Both apply Lagrangian Relaxation to an SDP relaxation for the problem. The first one explicitly dualizes the semidefiniteness constraint, attaching to it a positive semidefinite matrix of Lagrangian multipliers. The second relies on a semi-infinite reformulation for the cone of positive semidefinite matrices and dualizes a dynamically updated finite set of inequalities that approximate the cone. These lower bounding procedures are the core ingredient of two QMSTP Branch-and-bound algorithms. Our computational experiments indicate that the SDP bounds computed here are very strong, being able to close at least 70% of the gaps of the most competitive formulation in the literature. As a result, their accompanying Branch-and-bound algorithms are competitive with the best previously available QMSTP exact algorithm in the literature. In fact, one of these new Branch-and-bound algorithms stands out as the new best exact solution approach for the problem.

Suggested Citation

  • Guimarães, Dilson Almeida & da Cunha, Alexandre Salles & Pereira, Dilson Lucas, 2020. "Semidefinite programming lower bounds and branch-and-bound algorithms for the quadratic minimum spanning tree problem," European Journal of Operational Research, Elsevier, vol. 280(1), pages 46-58.
  • Handle: RePEc:eee:ejores:v:280:y:2020:i:1:p:46-58
    DOI: 10.1016/j.ejor.2019.07.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719306022
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.07.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nihal Berktaş & Hande Yaman, 2021. "A Branch-and-Bound Algorithm for Team Formation on Social Networks," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1162-1176, July.
    2. Pereira, Dilson Lucas & Salles da Cunha, Alexandre, 2020. "Dynamic intersection of multiple implicit Dantzig–Wolfe decompositions applied to the adjacent only quadratic minimum spanning tree problem," European Journal of Operational Research, Elsevier, vol. 284(2), pages 413-426.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:280:y:2020:i:1:p:46-58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.