IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v280y2020i1p242-253.html
   My bibliography  Save this article

A conic relaxation model for searching for the global optimum of network data envelopment analysis

Author

Listed:
  • Chen, Kun
  • Cook, Wade D.
  • Zhu, Joe

Abstract

Network data envelopment analysis (DEA) models the internal structures of decision-making units (DMUs). Unlike the standard DEA model, multiplier-based network DEA models are often highly non-linear and cannot be converted into linear programs. As such, obtaining a non-linear network DEA's global optimal solution is a challenge because it corresponds to a nonconvex optimization problem. In this paper, we introduce a conic relaxation model that searches for the global optimum to the general multiplier-based network DEA model. We reformulate the general network DEA models and relax the new models into second order cone programming (SOCP) problems. In comparison with linear relaxation models, which is potentially applicable to general network DEA structures, the conic relaxation model guarantees applicability in general network DEA, since McCormick envelopes involved are ensured to be finite. Furthermore, the conic relaxation model avoids unnecessary linear relaxations of some nonlinear constraints. It generates, in a more convenient manner, feasible approximations and tighter upper bounds on the global optimal overall efficiency. Compared with a line-parameter search method that has been applied to solve non-linear network DEA models, the conic relaxation model keeps track of the distances between the optimal overall efficiency and its approximations. As a result, it is able to determine whether a qualified approximation has been achieved or not, with the help of a branch and bound algorithm. Hence, our proposed approach can substantially reduce the computations involved.

Suggested Citation

  • Chen, Kun & Cook, Wade D. & Zhu, Joe, 2020. "A conic relaxation model for searching for the global optimum of network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 280(1), pages 242-253.
  • Handle: RePEc:eee:ejores:v:280:y:2020:i:1:p:242-253
    DOI: 10.1016/j.ejor.2019.07.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719305764
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.07.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Shi & Anyu Yu & Huong Ngo Higgins & Joe Zhu, 2021. "Shared and unsplittable performance links in network DEA," Annals of Operations Research, Springer, vol. 303(1), pages 507-528, August.
    2. N. Torabi Golsefid & M. Salahi, 2023. "An SOCP approach to a two-stage network DEA with feedbacks and shared resources," OPSEARCH, Springer;Operational Research Society of India, vol. 60(3), pages 1153-1178, September.
    3. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    4. Joe Zhu, 2022. "DEA under big data: data enabled analytics and network data envelopment analysis," Annals of Operations Research, Springer, vol. 309(2), pages 761-783, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:280:y:2020:i:1:p:242-253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.