IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v254y2016i1p9-18.html
   My bibliography  Save this article

A computational study for bilevel quadratic programs using semidefinite relaxations

Author

Listed:
  • Adasme, Pablo
  • Lisser, Abdel

Abstract

In this paper, we deal with bilevel quadratic programming problems with binary decision variables in the leader problem and convex quadratic programs in the follower problem. For this purpose, we transform the bilevel problems into equivalent quadratic single level formulations by replacing the follower problem with the equivalent Karush Kuhn Tucker (KKT) conditions. Then, we use the single level formulations to obtain mixed integer linear programming (MILP) models and semidefinite programming (SDP) relaxations. Thus, we compute optimal solutions and upper bounds using linear programming (LP) and SDP relaxations. Our numerical results indicate that the SDP relaxations are considerably tighter than the LP ones. Consequently, the SDP relaxations allow finding tight feasible solutions for the problem. Especially, when the number of variables in the leader problem is larger than in the follower problem. Moreover, they are solved at a significantly lower computational cost for large scale instances.

Suggested Citation

  • Adasme, Pablo & Lisser, Abdel, 2016. "A computational study for bilevel quadratic programs using semidefinite relaxations," European Journal of Operational Research, Elsevier, vol. 254(1), pages 9-18.
  • Handle: RePEc:eee:ejores:v:254:y:2016:i:1:p:9-18
    DOI: 10.1016/j.ejor.2016.01.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716000497
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.01.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriel Lopez Zenarosa & Oleg A. Prokopyev & Eduardo L. Pasiliao, 2021. "On exact solution approaches for bilevel quadratic 0–1 knapsack problem," Annals of Operations Research, Springer, vol. 298(1), pages 555-572, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:254:y:2016:i:1:p:9-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.