IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v246y2015i1p154-169.html
   My bibliography  Save this article

Ant colony optimization based binary search for efficient point pattern matching in images

Author

Listed:
  • Sreeja, N.K.
  • Sankar, A.

Abstract

Point Pattern Matching (PPM) is a task to pair up the points in two images of a same scene. There are many existing approaches in literature for point pattern matching. However, the drawback lies in the high complexity of the algorithms. To overcome this drawback, an Ant Colony Optimization based Binary Search Point Pattern Matching (ACOBSPPM) algorithm is proposed. According to this approach, the edges of the image are stored in the form of point patterns. To match an incoming image with the stored images, the ant agent chooses a point value in the incoming image point pattern and employs a binary search method to find a match with the point values in the stored image point pattern chosen for comparison. Once a match occurs, the ant agent finds a match for the next point value in the incoming image point pattern by searching between the matching position and maximum number of point values in the stored image point pattern. The stored image point pattern having the maximum number of matches is the image matching with the incoming image. Experimental results are shown to prove that ACOBSPPM algorithm is efficient when compared to the existing point pattern matching approaches in terms of time complexity and precision accuracy.

Suggested Citation

  • Sreeja, N.K. & Sankar, A., 2015. "Ant colony optimization based binary search for efficient point pattern matching in images," European Journal of Operational Research, Elsevier, vol. 246(1), pages 154-169.
  • Handle: RePEc:eee:ejores:v:246:y:2015:i:1:p:154-169
    DOI: 10.1016/j.ejor.2015.04.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715002842
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.04.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jovanovic, Raka & Tuba, Milan & Voß, Stefan, 2019. "An efficient ant colony optimization algorithm for the blocks relocation problem," European Journal of Operational Research, Elsevier, vol. 274(1), pages 78-90.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:246:y:2015:i:1:p:154-169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.