IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v240y2015i1p193-201.html
   My bibliography  Save this article

Robustness analysis in Multi-Objective Mathematical Programming using Monte Carlo simulation

Author

Listed:
  • Mavrotas, George
  • Pechak, Olena
  • Siskos, Eleftherios
  • Doukas, Haris
  • Psarras, John

Abstract

In most multi-objective optimization problems we aim at selecting the most preferred among the generated Pareto optimal solutions (a subjective selection among objectively determined solutions). In this paper we consider the robustness of the selected Pareto optimal solution in relation to perturbations within weights of the objective functions. For this task we design an integrated approach that can be used in multi-objective discrete and continuous problems using a combination of Monte Carlo simulation and optimization. In the proposed method we introduce measures of robustness for Pareto optimal solutions. In this way we can compare them according to their robustness, introducing one more characteristic for the Pareto optimal solution quality. In addition, especially in multi-objective discrete problems, we can detect the most robust Pareto optimal solution among neighboring ones. A computational experiment is designed in order to illustrate the method and its advantages. It is noteworthy that the Augmented Weighted Tchebycheff proved to be much more reliable than the conventional weighted sum method in discrete problems, due to the existence of unsupported Pareto optimal solutions.

Suggested Citation

  • Mavrotas, George & Pechak, Olena & Siskos, Eleftherios & Doukas, Haris & Psarras, John, 2015. "Robustness analysis in Multi-Objective Mathematical Programming using Monte Carlo simulation," European Journal of Operational Research, Elsevier, vol. 240(1), pages 193-201.
  • Handle: RePEc:eee:ejores:v:240:y:2015:i:1:p:193-201
    DOI: 10.1016/j.ejor.2014.06.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714005426
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.06.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    2. Tervonen, Tommi & Lahdelma, Risto, 2007. "Implementing stochastic multicriteria acceptability analysis," European Journal of Operational Research, Elsevier, vol. 178(2), pages 500-513, April.
    3. Lahdelma, Risto & Hokkanen, Joonas & Salminen, Pekka, 1998. "SMAA - Stochastic multiobjective acceptability analysis," European Journal of Operational Research, Elsevier, vol. 106(1), pages 137-143, April.
    4. Liesiö, Juuso & Mild, Pekka & Salo, Ahti, 2008. "Robust portfolio modeling with incomplete cost information and project interdependencies," European Journal of Operational Research, Elsevier, vol. 190(3), pages 679-695, November.
    5. Mareschal, Bertrand, 1988. "Weight stability intervals in multicriteria decision aid," European Journal of Operational Research, Elsevier, vol. 33(1), pages 54-64, January.
    6. Liesio, Juuso & Mild, Pekka & Salo, Ahti, 2007. "Preference programming for robust portfolio modeling and project selection," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1488-1505, September.
    7. Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
    8. Tervonen, Tommi & van Valkenhoef, Gert & Baştürk, Nalan & Postmus, Douwe, 2013. "Hit-And-Run enables efficient weight generation for simulation-based multiple criteria decision analysis," European Journal of Operational Research, Elsevier, vol. 224(3), pages 552-559.
    9. Wang, Jingguo & Zionts, Stanley, 2006. "The aspiration level interactive method (AIM) reconsidered: Robustness of solutions," European Journal of Operational Research, Elsevier, vol. 175(2), pages 948-958, December.
    10. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    11. Tervonen, Tommi & Figueira, José Rui & Lahdelma, Risto & Dias, Juscelino Almeida & Salminen, Pekka, 2009. "A stochastic method for robustness analysis in sorting problems," European Journal of Operational Research, Elsevier, vol. 192(1), pages 236-242, January.
    12. Wierzbicki, Andrzej P. & Granat, Janusz, 1999. "Multi-objective modeling for engineering applications: DIDASN++ system," European Journal of Operational Research, Elsevier, vol. 113(2), pages 374-389, March.
    13. Roy, Bernard, 2010. "Robustness in operational research and decision aiding: A multi-faceted issue," European Journal of Operational Research, Elsevier, vol. 200(3), pages 629-638, February.
    14. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    15. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsionas, Mike G., 2019. "Multi-objective optimization using statistical models," European Journal of Operational Research, Elsevier, vol. 276(1), pages 364-378.
    2. Trivyza, Nikoletta L. & Rentizelas, Athanasios & Theotokatos, Gerasimos & Boulougouris, Evangelos, 2022. "Decision support methods for sustainable ship energy systems: A state-of-the-art review," Energy, Elsevier, vol. 239(PC).
    3. Mavrotas, George & Figueira, José Rui & Siskos, Eleftherios, 2015. "Robustness analysis methodology for multi-objective combinatorial optimization problems and application to project selection," Omega, Elsevier, vol. 52(C), pages 142-155.
    4. Forouli, Aikaterini & Gkonis, Nikolaos & Nikas, Alexandros & Siskos, Eleftherios & Doukas, Haris & Tourkolias, Christos, 2019. "Energy efficiency promotion in Greece in light of risk: Evaluating policies as portfolio assets," Energy, Elsevier, vol. 170(C), pages 818-831.
    5. Jornada, Daniel & Leon, V. Jorge, 2016. "Biobjective robust optimization over the efficient set for Pareto set reduction," European Journal of Operational Research, Elsevier, vol. 252(2), pages 573-586.
    6. Mastorakis, Kostis & Siskos, Eleftherios, 2016. "Value focused pharmaceutical strategy determination with multicriteria decision analysis techniques," Omega, Elsevier, vol. 59(PA), pages 84-96.
    7. Gkonis, Nikolaos & Arsenopoulos, Apostolos & Stamatiou, Athina & Doukas, Haris, 2020. "Multi-perspective design of energy efficiency policies under the framework of national energy and climate action plans," Energy Policy, Elsevier, vol. 140(C).
    8. Afrasiabi, Ahmadreza & Chalmardi, Mazyar Kaboli & Balezentis, Tomas, 2022. "A novel hybrid evaluation framework for public organizations based on employees’ performance factors," Evaluation and Program Planning, Elsevier, vol. 91(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mavrotas, George & Figueira, José Rui & Siskos, Eleftherios, 2015. "Robustness analysis methodology for multi-objective combinatorial optimization problems and application to project selection," Omega, Elsevier, vol. 52(C), pages 142-155.
    2. Corrente, Salvatore & Figueira, José Rui & Greco, Salvatore, 2014. "The SMAA-PROMETHEE method," European Journal of Operational Research, Elsevier, vol. 239(2), pages 514-522.
    3. Panos Xidonas & Haris Doukas & George Mavrotas & Olena Pechak, 2016. "Environmental corporate responsibility for investments evaluation: an alternative multi-objective programming model," Annals of Operations Research, Springer, vol. 247(2), pages 395-413, December.
    4. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    5. van Valkenhoef, Gert & Tervonen, Tommi, 2016. "Entropy-optimal weight constraint elicitation with additive multi-attribute utility models," Omega, Elsevier, vol. 64(C), pages 1-12.
    6. Tao Yao & Supreet Mandala & Byung Chung, 2009. "Evacuation Transportation Planning Under Uncertainty: A Robust Optimization Approach," Networks and Spatial Economics, Springer, vol. 9(2), pages 171-189, June.
    7. Cleber D. Rocco & Reinaldo Morabito, 2016. "Robust optimisation approach applied to the analysis of production / logistics and crop planning in the tomato processing industry," International Journal of Production Research, Taylor & Francis Journals, vol. 54(19), pages 5842-5861, October.
    8. Zhang, Xinwei & Yan, Yong & Wang, Lilin & Wang, Yang, 2024. "A ranking approach for robust portfolio decision analysis based on multilinear portfolio utility functions and incomplete preference information," Omega, Elsevier, vol. 122(C).
    9. Henao, César Augusto & Ferrer, Juan Carlos & Muñoz, Juan Carlos & Vera, Jorge, 2016. "Multiskilling with closed chains in a service industry: A robust optimization approach," International Journal of Production Economics, Elsevier, vol. 179(C), pages 166-178.
    10. Ghazaleh Ahmadi & Reza Tavakkoli-Moghaddam & Armand Baboli & Mehdi Najafi, 2022. "A decision support model for robust allocation and routing of search and rescue resources after earthquake: a case study," Operational Research, Springer, vol. 22(2), pages 1039-1081, April.
    11. Emmanuel Kwasi Mensah, 2020. "Robust data envelopment analysis via ellipsoidal uncertainty sets with application to the Italian banking industry," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 491-518, December.
    12. Wei, Cansheng & Li, Yongjian & Cai, Xiaoqiang, 2011. "Robust optimal policies of production and inventory with uncertain returns and demand," International Journal of Production Economics, Elsevier, vol. 134(2), pages 357-367, December.
    13. Nikulin, Yury, 2006. "Robustness in combinatorial optimization and scheduling theory: An extended annotated bibliography," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 606, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    14. Varas, Mauricio & Maturana, Sergio & Pascual, Rodrigo & Vargas, Ignacio & Vera, Jorge, 2014. "Scheduling production for a sawmill: A robust optimization approach," International Journal of Production Economics, Elsevier, vol. 150(C), pages 37-51.
    15. Hua Sun & Ziyou Gao & W. Szeto & Jiancheng Long & Fangxia Zhao, 2014. "A Distributionally Robust Joint Chance Constrained Optimization Model for the Dynamic Network Design Problem under Demand Uncertainty," Networks and Spatial Economics, Springer, vol. 14(3), pages 409-433, December.
    16. Dong, Cong & Huang, Guohe & Cai, Yanpeng & Cheng, Guanhui & Tan, Qian, 2016. "Bayesian interval robust optimization for sustainable energy system planning in Qiqihar City, China," Energy Economics, Elsevier, vol. 60(C), pages 357-376.
    17. Mehdi Karimi & Somayeh Moazeni & Levent Tunçel, 2018. "A Utility Theory Based Interactive Approach to Robustness in Linear Optimization," Journal of Global Optimization, Springer, vol. 70(4), pages 811-842, April.
    18. Angilella, Silvia & Corrente, Salvatore & Greco, Salvatore, 2015. "Stochastic multiobjective acceptability analysis for the Choquet integral preference model and the scale construction problem," European Journal of Operational Research, Elsevier, vol. 240(1), pages 172-182.
    19. Hatami-Marbini, Adel & Arabmaldar, Aliasghar, 2021. "Robustness of Farrell cost efficiency measurement under data perturbations: Evidence from a US manufacturing application," European Journal of Operational Research, Elsevier, vol. 295(2), pages 604-620.
    20. Vahid Nazari-Ghanbarloo & Ali Ghodratnama, 2021. "Optimizing a robust tri-objective multi-period reliable supply chain network considering queuing system and operational and disruption risks," Operational Research, Springer, vol. 21(3), pages 1963-2020, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:240:y:2015:i:1:p:193-201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.