IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v224y2013i3p486-496.html
   My bibliography  Save this article

A reduction approach for solving the rectangle packing area minimization problem

Author

Listed:
  • Bortfeldt, Andreas

Abstract

In the rectangle packing area minimization problem (RPAMP) we are given a set of rectangles with known dimensions. We have to determine an arrangement of all rectangles, without overlapping, inside an enveloping rectangle of minimum area. The paper presents a generic approach for solving the RPAMP that is based on two algorithms, one for the 2D Knapsack Problem (KP), and the other for the 2D Strip Packing Problem (SPP). In this way, solving an instance of the RPAMP is reduced to solving multiple SPP and KP instances. A fast constructive heuristic is used as SPP algorithm while the KP algorithm is instantiated by a tree search method and a genetic algorithm alternatively. All these SPP and KP methods have been published previously. Finally, the best variants of the resulting RPAMP heuristics are combined within one procedure. The guillotine cutting condition is always observed as an additional constraint. The approach was tested on 15 well-known RPAMP instances (above all MCNC and GSRC instances) and new best solutions were obtained for 10 instances. The computational effort remains acceptable. Moreover, 24 new benchmark instances are introduced and promising results are reported.

Suggested Citation

  • Bortfeldt, Andreas, 2013. "A reduction approach for solving the rectangle packing area minimization problem," European Journal of Operational Research, Elsevier, vol. 224(3), pages 486-496.
  • Handle: RePEc:eee:ejores:v:224:y:2013:i:3:p:486-496
    DOI: 10.1016/j.ejor.2012.08.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221712006066
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2012.08.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicos Christofides & Charles Whitlock, 1977. "An Algorithm for Two-Dimensional Cutting Problems," Operations Research, INFORMS, vol. 25(1), pages 30-44, February.
    2. Allen, S.D. & Burke, E.K. & Kendall, G., 2011. "A hybrid placement strategy for the three-dimensional strip packing problem," European Journal of Operational Research, Elsevier, vol. 209(3), pages 219-227, March.
    3. Tobias Fanslau & Andreas Bortfeldt, 2010. "A Tree Search Algorithm for Solving the Container Loading Problem," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 222-235, May.
    4. Hadjiconstantinou, Eleni & Iori, Manuel, 2007. "A hybrid genetic algorithm for the two-dimensional single large object placement problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1150-1166, December.
    5. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    6. G Belov & G Scheithauer & E A Mukhacheva, 2008. "One-dimensional heuristics adapted for two-dimensional rectangular strip packing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(6), pages 823-832, June.
    7. Adam Janiak & Andrzej Kozik & Maciej Lichtenstein, 2010. "New perspectives in VLSI design automation: deterministic packing by Sequence Pair," Annals of Operations Research, Springer, vol. 179(1), pages 35-56, September.
    8. Andrea Lodi & Silvano Martello & Daniele Vigo, 1999. "Heuristic and Metaheuristic Approaches for a Class of Two-Dimensional Bin Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 11(4), pages 345-357, November.
    9. Imahori, S. & Yagiura, M. & Ibaraki, T., 2005. "Improved local search algorithms for the rectangle packing problem with general spatial costs," European Journal of Operational Research, Elsevier, vol. 167(1), pages 48-67, November.
    10. Baldacci, Roberto & Boschetti, Marco A., 2007. "A cutting-plane approach for the two-dimensional orthogonal non-guillotine cutting problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1136-1149, December.
    11. Alvarez-Valdes, R. & Parreno, F. & Tamarit, J.M., 2007. "A tabu search algorithm for a two-dimensional non-guillotine cutting problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1167-1182, December.
    12. Leung, Stephen C.H. & Zhang, Defu & Sim, Kwang Mong, 2011. "A two-stage intelligent search algorithm for the two-dimensional strip packing problem," European Journal of Operational Research, Elsevier, vol. 215(1), pages 57-69, November.
    13. Beasley, J. E., 2004. "A population heuristic for constrained two-dimensional non-guillotine cutting," European Journal of Operational Research, Elsevier, vol. 156(3), pages 601-627, August.
    14. Bortfeldt, Andreas & Gehring, Hermann, 2001. "A hybrid genetic algorithm for the container loading problem," European Journal of Operational Research, Elsevier, vol. 131(1), pages 143-161, May.
    15. Wu, Yu-Liang & Huang, Wenqi & Lau, Siu-chung & Wong, C. K. & Young, Gilbert H., 2002. "An effective quasi-human based heuristic for solving the rectangle packing problem," European Journal of Operational Research, Elsevier, vol. 141(2), pages 341-358, September.
    16. Volker Maag & Martin Berger & Anton Winterfeld & Karl-Heinz Küfer, 2010. "A novel non-linear approach to minimal area rectangular packing," Annals of Operations Research, Springer, vol. 179(1), pages 243-260, September.
    17. Richard Korf & Michael Moffitt & Martha Pollack, 2010. "Optimal rectangle packing," Annals of Operations Research, Springer, vol. 179(1), pages 261-295, September.
    18. Bortfeldt, Andreas & Mack, Daniel, 2007. "A heuristic for the three-dimensional strip packing problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1267-1279, December.
    19. Wang, Pearl Y. & Valenzela, Christine L., 2001. "Data set generation for rectangular placement problems," European Journal of Operational Research, Elsevier, vol. 134(2), pages 378-391, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Lijun & Zhu, Wenbin & Lim, Andrew & Liu, Qiang & Chen, Xin, 2018. "An adaptive selection approach for the 2D rectangle packing area minimization problem," Omega, Elsevier, vol. 80(C), pages 22-30.
    2. He, Kun & Ji, Pengli & Li, Chumin, 2015. "Dynamic reduction heuristics for the rectangle packing area minimization problem," European Journal of Operational Research, Elsevier, vol. 241(3), pages 674-685.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felix Prause & Kai Hoppmann-Baum & Boris Defourny & Thorsten Koch, 2021. "The maximum diversity assortment selection problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(3), pages 521-554, June.
    2. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    3. Andreas Bortfeldt & Sabine Jungmann, 2012. "A tree search algorithm for solving the multi-dimensional strip packing problem with guillotine cutting constraint," Annals of Operations Research, Springer, vol. 196(1), pages 53-71, July.
    4. Ortmann, Frank G. & Ntene, Nthabiseng & van Vuuren, Jan H., 2010. "New and improved level heuristics for the rectangular strip packing and variable-sized bin packing problems," European Journal of Operational Research, Elsevier, vol. 203(2), pages 306-315, June.
    5. Wei, Lijun & Oon, Wee-Chong & Zhu, Wenbin & Lim, Andrew, 2012. "A reference length approach for the 3D strip packing problem," European Journal of Operational Research, Elsevier, vol. 220(1), pages 37-47.
    6. Bortfeldt, Andreas & Wäscher, Gerhard, 2013. "Constraints in container loading – A state-of-the-art review," European Journal of Operational Research, Elsevier, vol. 229(1), pages 1-20.
    7. Igor Kierkosz & Maciej Luczak, 2014. "A hybrid evolutionary algorithm for the two-dimensional packing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(4), pages 729-753, December.
    8. Wei, Lijun & Oon, Wee-Chong & Zhu, Wenbin & Lim, Andrew, 2011. "A skyline heuristic for the 2D rectangular packing and strip packing problems," European Journal of Operational Research, Elsevier, vol. 215(2), pages 337-346, December.
    9. He, Kun & Ji, Pengli & Li, Chumin, 2015. "Dynamic reduction heuristics for the rectangle packing area minimization problem," European Journal of Operational Research, Elsevier, vol. 241(3), pages 674-685.
    10. Rosephine G. Rakotonirainy & Jan H. Vuuren, 2021. "The effect of benchmark data characteristics during empirical strip packing heuristic performance evaluation," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(2), pages 467-495, June.
    11. Carlos A. Vega-Mejía & Jairo R. Montoya-Torres & Sardar M. N. Islam, 2019. "Consideration of triple bottom line objectives for sustainability in the optimization of vehicle routing and loading operations: a systematic literature review," Annals of Operations Research, Springer, vol. 273(1), pages 311-375, February.
    12. Sheng, Liu & Hongxia, Zhao & Xisong, Dong & Changjian, Cheng, 2016. "A heuristic algorithm for container loading of pallets with infill boxes," European Journal of Operational Research, Elsevier, vol. 252(3), pages 728-736.
    13. José Fernando Gonçalves & Mauricio G. C. Resende, 2011. "A parallel multi-population genetic algorithm for a constrained two-dimensional orthogonal packing problem," Journal of Combinatorial Optimization, Springer, vol. 22(2), pages 180-201, August.
    14. Zhu, Wenbin & Lim, Andrew, 2012. "A new iterative-doubling Greedy–Lookahead algorithm for the single container loading problem," European Journal of Operational Research, Elsevier, vol. 222(3), pages 408-417.
    15. Wei, Lijun & Hu, Qian & Lim, Andrew & Liu, Qiang, 2018. "A best-fit branch-and-bound heuristic for the unconstrained two-dimensional non-guillotine cutting problem," European Journal of Operational Research, Elsevier, vol. 270(2), pages 448-474.
    16. Stéphane Grandcolas & Cyril Pain-Barre, 2022. "A hybrid metaheuristic for the two-dimensional strip packing problem," Annals of Operations Research, Springer, vol. 309(1), pages 79-102, February.
    17. Selma Khebbache-Hadji & Christian Prins & Alice Yalaoui & Mohamed Reghioui, 2013. "Heuristics and memetic algorithm for the two-dimensional loading capacitated vehicle routing problem with time windows," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(2), pages 307-336, March.
    18. Hong, Shaohui & Zhang, Defu & Lau, Hoong Chuin & Zeng, XiangXiang & Si, Yain-Whar, 2014. "A hybrid heuristic algorithm for the 2D variable-sized bin packing problem," European Journal of Operational Research, Elsevier, vol. 238(1), pages 95-103.
    19. Wei, Lijun & Lim, Andrew, 2015. "A bidirectional building approach for the 2D constrained guillotine knapsack packing problem," European Journal of Operational Research, Elsevier, vol. 242(1), pages 63-71.
    20. I. Gimenez-Palacios & M. T. Alonso & R. Alvarez-Valdes & F. Parreño, 2021. "Logistic constraints in container loading problems: the impact of complete shipment conditions," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 177-203, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:224:y:2013:i:3:p:486-496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.