IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v214y2011i3p616-626.html
   My bibliography  Save this article

Manufacturing performance measurement and target setting: A data envelopment analysis approach

Author

Listed:
  • Jain, Sanjay
  • Triantis, Konstantinos P.
  • Liu, Shiyong

Abstract

Manufacturing decision makers have to deal with a large number of reports and metrics for evaluating the performance of manufacturing systems. Since the metrics provide different and at times conflicting assessments, it is hard for the manufacturing decision makers to track and improve overall manufacturing system performance. This research presents a data envelopment analysis (DEA) based approach for performance measurement and target setting of manufacturing systems. The approach is applied to two different manufacturing environments. The performance peer groups identified using DEA are utilized to set performance targets and to guide performance improvement efforts. The DEA scores are checked against past process modifications that led to identified performance changes. Limitations of the DEA based approach are presented when considering measures that are influenced by factors outside of the control of the manufacturing decision makers. The potential of a DEA based generic performance measurement approach for manufacturing systems is provided.

Suggested Citation

  • Jain, Sanjay & Triantis, Konstantinos P. & Liu, Shiyong, 2011. "Manufacturing performance measurement and target setting: A data envelopment analysis approach," European Journal of Operational Research, Elsevier, vol. 214(3), pages 616-626, November.
  • Handle: RePEc:eee:ejores:v:214:y:2011:i:3:p:616-626
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722171100453X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Triantis, Konstantinos & Sarangi, Sudipta & Kuchta, Dorota, 2003. "Fuzzy pair-wise dominance and fuzzy indices: An evaluation of productive performance," European Journal of Operational Research, Elsevier, vol. 144(2), pages 412-428, January.
    2. Rolf Färe & Shawna Grosskopf & Gerald Whittaker, 2014. "Network DEA II," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 307-327, Springer.
    3. Saranga, Haritha, 2009. "The Indian auto component industry - Estimation of operational efficiency and its determinants using DEA," European Journal of Operational Research, Elsevier, vol. 196(2), pages 707-718, July.
    4. Sheu, D. Daniel & Peng, Shiao-Lan, 2003. "Assessing manufacturing management performance for notebook computer plants in Taiwan," International Journal of Production Economics, Elsevier, vol. 84(2), pages 215-228, May.
    5. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    6. Y C Ng & M K Chang, 2003. "Impact of computerization on firm performance: a case of Shanghai manufacturing enterprises," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(10), pages 1029-1037, October.
    7. A Medina-Borja & K S Pasupathy & K Triantis, 2007. "Large-scale data envelopment analysis (DEA) implementation: a strategic performance management approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(8), pages 1084-1098, August.
    8. Zhu, Joe, 1996. "Robustness of the efficient DMUs in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 90(3), pages 451-460, May.
    9. Fare, Rolf & Grosskopf, Shawna & Zaim, Osman, 2002. "Hyperbolic efficiency and return to the dollar," European Journal of Operational Research, Elsevier, vol. 136(3), pages 671-679, February.
    10. Duzakin, Erkut & Duzakin, Hatice, 2007. "Measuring the performance of manufacturing firms with super slacks based model of data envelopment analysis: An application of 500 major industrial enterprises in Turkey," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1412-1432, November.
    11. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    12. Ertay, Tijen & Ruan, Da, 2005. "Data envelopment analysis based decision model for optimal operator allocation in CMS," European Journal of Operational Research, Elsevier, vol. 164(3), pages 800-810, August.
    13. Chen, Chien-Ming, 2009. "A network-DEA model with new efficiency measures to incorporate the dynamic effect in production networks," European Journal of Operational Research, Elsevier, vol. 194(3), pages 687-699, May.
    14. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    15. Cook, Wade D. & Green, Rodney H., 2004. "Multicomponent efficiency measurement and core business identification in multiplant firms: A DEA model," European Journal of Operational Research, Elsevier, vol. 157(3), pages 540-551, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthias Klumpp & Dominic Loske & Silvio Bicciato, 2022. "COVID-19 health policy evaluation: integrating health and economic perspectives with a data envelopment analysis approach," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(8), pages 1263-1285, November.
    2. Tavana, Madjid & Ebrahimnejad, Ali & Santos-Arteaga, Francisco J. & Mansourzadeh, Seyed Mehdi & Matin, Reza Kazemi, 2018. "A hybrid DEA-MOLP model for public school assessment and closure decision in the City of Philadelphia," Socio-Economic Planning Sciences, Elsevier, vol. 61(C), pages 70-89.
    3. Robert John Kolesar & Peter Bogetoft & Vanara Chea & Guido Erreygers & Sambo Pheakdey, 2022. "Advancing universal health coverage in the COVID-19 era: an assessment of public health services technical efficiency and applied cost allocation in Cambodia," Health Economics Review, Springer, vol. 12(1), pages 1-20, December.
    4. Yeong, Wai Chung & Khoo, Michael B.C. & Lee, Ming Ha & Rahim, M.A., 2013. "Economic and economic statistical designs of the synthetic X¯ chart using loss functions," European Journal of Operational Research, Elsevier, vol. 228(3), pages 571-581.
    5. Piran, Fabio Antonio Sartori & Lacerda, Daniel Pacheco & Camargo, Luis Felipe Riehs & Viero, Carlos Frederico & Dresch, Aline & Cauchick-Miguel, Paulo Augusto, 2016. "Product modularization and effects on efficiency: An analysis of a bus manufacturer using data envelopment analysis (DEA)," International Journal of Production Economics, Elsevier, vol. 182(C), pages 1-13.
    6. Barbosa, Luziane Machado & Lacerda, Daniel Pacheco & Piran, Fabio Antonio Sartori & Dresch, Aline, 2017. "Exploratory analysis of the variables prevailing on the effects of product modularization on production volume and efficiency," International Journal of Production Economics, Elsevier, vol. 193(C), pages 677-690.
    7. Topcu, Taylan G. & Triantis, Konstantinos & Roets, Bart, 2019. "Estimation of the workload boundary in socio-technical infrastructure management systems: The case of Belgian railroads," European Journal of Operational Research, Elsevier, vol. 278(1), pages 314-329.
    8. Konstantinos Petridis & Alexander Chatzigeorgiou & Emmanouil Stiakakis, 2016. "A spatiotemporal Data Envelopment Analysis (S-T DEA) approach: the need to assess evolving units," Annals of Operations Research, Springer, vol. 238(1), pages 475-496, March.
    9. Visani, Franco & Boccali, Filippo, 2020. "Purchasing price assessment of leverage items: A Data Envelopment Analysis approach," International Journal of Production Economics, Elsevier, vol. 223(C).
    10. Ehsan Pourjavad & Rene V. Mayorga, 2019. "A comparative study and measuring performance of manufacturing systems with Mamdani fuzzy inference system," Journal of Intelligent Manufacturing, Springer, vol. 30(3), pages 1085-1097, March.
    11. Telles, Eduardo Santos & Lacerda, Daniel Pacheco & Morandi, Maria Isabel Wolf Motta & Piran, Fabio Antonio Sartori, 2020. "Drum-buffer-rope in an engineering-to-order system: An analysis of an aerospace manufacturer using data envelopment analysis (DEA)," International Journal of Production Economics, Elsevier, vol. 222(C).
    12. Loske, Dominic & Klumpp, Matthias, 2021. "Human-AI collaboration in route planning: An empirical efficiency-based analysis in retail logistics," International Journal of Production Economics, Elsevier, vol. 241(C).
    13. Tan, Hua & Iqbal, Nadeem & Wu, Zhengzhong, 2022. "Evaluating the impact of stakeholder engagement for renewable energy sources and economic growth for CO2 emission," Renewable Energy, Elsevier, vol. 198(C), pages 999-1007.
    14. Liu, Wenbin B. & Meng, Wei & Mingers, John & Tang, Ning & Wang, Wei, 2012. "Developing a performance management system using soft systems methodology: A Chinese case study," European Journal of Operational Research, Elsevier, vol. 223(2), pages 529-540.
    15. Roets, Bart & Verschelde, Marijn & Christiaens, Johan, 2018. "Multi-output efficiency and operational safety: An analysis of railway traffic control centre performance," European Journal of Operational Research, Elsevier, vol. 271(1), pages 224-237.
    16. Konstantinos Petridis & Alexander Chatzigeorgiou & Emmanouil Stiakakis, 2016. "A spatiotemporal Data Envelopment Analysis (S-T DEA) approach: the need to assess evolving units," Annals of Operations Research, Springer, vol. 238(1), pages 475-496, March.
    17. Hahn, G.J. & Brandenburg, M. & Becker, J., 2021. "Valuing supply chain performance within and across manufacturing industries: A DEA-based approach," International Journal of Production Economics, Elsevier, vol. 240(C).
    18. Fabio Antonio Sartori Piran & Alaércio De Paris & Daniel Pacheco Lacerda & Luis Felipe Riehs Camargo & Rosiane Serrano & Ricardo Augusto Cassel, 2020. "Overall Equipment Effectiveness: Required but not Enough—An Analysis Integrating Overall Equipment Effect and Data Envelopment Analysis," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 21(2), pages 191-206, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaffash, Sepideh & Azizi, Roza & Huang, Ying & Zhu, Joe, 2020. "A survey of data envelopment analysis applications in the insurance industry 1993–2018," European Journal of Operational Research, Elsevier, vol. 284(3), pages 801-813.
    2. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    3. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    4. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    5. Tone, Kaoru & Tsutsui, Miki, 2009. "Network DEA: A slacks-based measure approach," European Journal of Operational Research, Elsevier, vol. 197(1), pages 243-252, August.
    6. Taleb, Mushtaq & Khalid, Ruzelan & Ramli, Razamin & Ghasemi, Mohammad Reza & Ignatius, Joshua, 2022. "An integrated bi-objective data envelopment analysis model for measuring returns to scale," European Journal of Operational Research, Elsevier, vol. 296(3), pages 967-979.
    7. Antonio Peyrache & Maria C. A. Silva, 2022. "Efficiency and Productivity Analysis from a System Perspective: Historical Overview," Springer Books, in: Duangkamon Chotikapanich & Alicia N. Rambaldi & Nicholas Rohde (ed.), Advances in Economic Measurement, chapter 0, pages 173-230, Springer.
    8. Huang, Tai-Hsin & Chen, Kuan-Chen & Lin, Chung-I, 2018. "An extension from network DEA to copula-based network SFA: Evidence from the U.S. commercial banks in 2009," The Quarterly Review of Economics and Finance, Elsevier, vol. 67(C), pages 51-62.
    9. Kao, Chiang, 2016. "Efficiency decomposition and aggregation in network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 255(3), pages 778-786.
    10. Jun-Fei Chu & Jie Wu & Ma-Lin Song, 2018. "An SBM-DEA model with parallel computing design for environmental efficiency evaluation in the big data context: a transportation system application," Annals of Operations Research, Springer, vol. 270(1), pages 105-124, November.
    11. Duygun, Meryem & Prior, Diego & Shaban, Mohamed & Tortosa-Ausina, Emili, 2016. "Disentangling the European airlines efficiency puzzle: A network data envelopment analysis approach," Omega, Elsevier, vol. 60(C), pages 2-14.
    12. Majid Azadi & Balal Karimi & William Ho & Reza Farzipoor Saen, 2022. "Assessing green performance of power plants by multiple hybrid returns to scale technologies," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1177-1211, December.
    13. Bian, Yiwen & Yang, Feng, 2010. "Resource and environment efficiency analysis of provinces in China: A DEA approach based on Shannon's entropy," Energy Policy, Elsevier, vol. 38(4), pages 1909-1917, April.
    14. Emrouznejad, Ali & De Witte, Kristof, 2010. "COOPER-framework: A unified process for non-parametric projects," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1573-1586, December.
    15. Adler, Nicole & Liebert, Vanessa & Yazhemsky, Ekaterina, 2013. "Benchmarking airports from a managerial perspective," Omega, Elsevier, vol. 41(2), pages 442-458.
    16. Mallikarjun, Sreekanth & Lewis, Herbert F. & Sexton, Thomas R., 2014. "Operational performance of U.S. public rail transit and implications for public policy," Socio-Economic Planning Sciences, Elsevier, vol. 48(1), pages 74-88.
    17. Barnabé Walheer, 2020. "Output, input, and undesirable output interconnections in data envelopment analysis: convexity and returns-to-scale," Annals of Operations Research, Springer, vol. 284(1), pages 447-467, January.
    18. Feng Li & Qingyuan Zhu & Jun Zhuang, 2018. "Analysis of fire protection efficiency in the United States: a two-stage DEA-based approach," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 23-68, January.
    19. Kao, Chiang, 2018. "Multiplicative aggregation of division efficiencies in network data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 270(1), pages 328-336.
    20. Simona Cohen-Kadosh & Zilla Sinuany-Stern, 2020. "Hip fracture surgery efficiency in Israeli hospitals via a network data envelopment analysis," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 251-277, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:214:y:2011:i:3:p:616-626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.