IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v212y2011i2p345-351.html
   My bibliography  Save this article

Gradient-based simulation optimization under probability constraints

Author

Listed:
  • Andrieu, Laetitia
  • Cohen, Guy
  • Vázquez-Abad, Felisa J.

Abstract

We study optimization problems subject to possible fatal failures. The probability of failure should not exceed a given confidence level. The distribution of the failure event is assumed unknown, but it can be generated via simulation or observation of historical data. Gradient-based simulation-optimization methods pose the difficulty of the estimation of the gradient of the probability constraint under no knowledge of the distribution. In this work we provide two single-path estimators with bias: a convolution method and a finite difference, and we provide a full analysis of convergence of the Arrow-Hurwicz algorithm, which we use as our solver for optimization. Convergence results are used to tune the parameters of the numerical algorithms in order to achieve best convergence rates, and numerical results are included via an example of application in finance.

Suggested Citation

  • Andrieu, Laetitia & Cohen, Guy & Vázquez-Abad, Felisa J., 2011. "Gradient-based simulation optimization under probability constraints," European Journal of Operational Research, Elsevier, vol. 212(2), pages 345-351, July.
  • Handle: RePEc:eee:ejores:v:212:y:2011:i:2:p:345-351
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(11)00103-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang, Kuo-Hao, 2015. "A direct search method for unconstrained quantile-based simulation optimization," European Journal of Operational Research, Elsevier, vol. 246(2), pages 487-495.
    2. Chang, Kuo-Hao, 2012. "Stochastic Nelder–Mead simplex method – A new globally convergent direct search method for simulation optimization," European Journal of Operational Research, Elsevier, vol. 220(3), pages 684-694.
    3. Frazier, David T. & Oka, Tatsushi & Zhu, Dan, 2019. "Indirect inference with a non-smooth criterion function," Journal of Econometrics, Elsevier, vol. 212(2), pages 623-645.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:212:y:2011:i:2:p:345-351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.