IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v211y2011i2p221-231.html
   My bibliography  Save this article

Spectral methods for graph clustering - A survey

Author

Listed:
  • Nascimento, Mariá C.V.
  • de Carvalho, André C.P.L.F.

Abstract

Graph clustering is an area in cluster analysis that looks for groups of related vertices in a graph. Due to its large applicability, several graph clustering algorithms have been proposed in the last years. A particular class of graph clustering algorithms is known as spectral clustering algorithms. These algorithms are mostly based on the eigen-decomposition of Laplacian matrices of either weighted or unweighted graphs. This survey presents different graph clustering formulations, most of which based on graph cut and partitioning problems, and describes the main spectral clustering algorithms found in literature that solve these problems.

Suggested Citation

  • Nascimento, Mariá C.V. & de Carvalho, André C.P.L.F., 2011. "Spectral methods for graph clustering - A survey," European Journal of Operational Research, Elsevier, vol. 211(2), pages 221-231, June.
  • Handle: RePEc:eee:ejores:v:211:y:2011:i:2:p:221-231
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00549-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kenneth M. Hall, 1970. "An r-Dimensional Quadratic Placement Algorithm," Management Science, INFORMS, vol. 17(3), pages 219-229, November.
    2. Pablo M. Gleiser & Leon Danon, 2003. "Community Structure In Jazz," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 6(04), pages 565-573.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Wei-Wen & Lan, Lawrence W. & Lee, Yu-Ting, 2012. "Exploring the critical pillars and causal relations within the NRI: An innovative approach," European Journal of Operational Research, Elsevier, vol. 218(1), pages 230-238.
    2. D’Ambra, Pasqua & Vassilevski, Panayot S. & Cutillo, Luisa, 2023. "Extending bootstrap AMG for clustering of attributed graphs," Applied Mathematics and Computation, Elsevier, vol. 447(C).
    3. Carrizosa, Emilio & Mladenović, Nenad & Todosijević, Raca, 2013. "Variable neighborhood search for minimum sum-of-squares clustering on networks," European Journal of Operational Research, Elsevier, vol. 230(2), pages 356-363.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Yun & Liu, Yongguo & Li, Jieting & Zhu, Jiajing & Yang, Changhong & Yang, Wen & Wen, Chuanbiao, 2020. "WOCDA: A whale optimization based community detection algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    2. Rezvanian, Alireza & Meybodi, Mohammad Reza, 2015. "Sampling social networks using shortest paths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 424(C), pages 254-268.
    3. Liu, X. & Murata, T., 2010. "Advanced modularity-specialized label propagation algorithm for detecting communities in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1493-1500.
    4. Etienne Côme & Nicolas Jouvin & Pierre Latouche & Charles Bouveyron, 2021. "Hierarchical clustering with discrete latent variable models and the integrated classification likelihood," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(4), pages 957-986, December.
    5. Namtirtha, Amrita & Dutta, Animesh & Dutta, Biswanath, 2018. "Identifying influential spreaders in complex networks based on kshell hybrid method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 310-324.
    6. Laleh Behjat & Dorothy Kucar & Anthony Vannelli, 2002. "A Novel Eigenvector Technique for Large Scale Combinatorial Problems in VLSI Layout," Journal of Combinatorial Optimization, Springer, vol. 6(3), pages 271-286, September.
    7. Wang, Zhixiao & Zhao, Ya & Xi, Jingke & Du, Changjiang, 2016. "Fast ranking influential nodes in complex networks using a k-shell iteration factor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 171-181.
    8. Zareie, Ahmad & Sheikhahmadi, Amir, 2019. "EHC: Extended H-index Centrality measure for identification of users’ spreading influence in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 141-155.
    9. Hu, Fang & Liu, Jia & Li, Liuhuan & Liang, Jun, 2020. "Community detection in complex networks using Node2vec with spectral clustering," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    10. André R. S. Amaral, 2008. "An Exact Approach to the One-Dimensional Facility Layout Problem," Operations Research, INFORMS, vol. 56(4), pages 1026-1033, August.
    11. Xu, Shuang & Wang, Pei, 2017. "Identifying important nodes by adaptive LeaderRank," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 654-664.
    12. Gautier M Krings & Jean-François Carpantier & Jean-Charles Delvenne, 2014. "Trade Integration and Trade Imbalances in the European Union: A Network Perspective," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-14, January.
    13. Rosenberg, Eric, 2018. "Generalized Hausdorff dimensions of a complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 1-17.
    14. Antiqueira, L. & Nunes, M.G.V. & Oliveira Jr., O.N. & F. Costa, L. da, 2007. "Strong correlations between text quality and complex networks features," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 373(C), pages 811-820.
    15. Liu, Panfeng & Li, Longjie & Fang, Shiyu & Yao, Yukai, 2021. "Identifying influential nodes in social networks: A voting approach," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    16. Su, Zhen & Liu, Fanzhen & Gao, Chao & Gao, Shupeng & Li, Xianghua, 2018. "Inferring infection rate based on observations in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 170-176.
    17. Šubelj, Lovro & Bajec, Marko, 2011. "Community structure of complex software systems: Analysis and applications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(16), pages 2968-2975.
    18. Ravi Kumar, K. & Hadjinicola, George C. & Lin, Ting-li, 1995. "A heuristic procedure for the single-row facility layout problem," European Journal of Operational Research, Elsevier, vol. 87(1), pages 65-73, November.
    19. Li, Xiaojia & Li, Menghui & Hu, Yanqing & Di, Zengru & Fan, Ying, 2010. "Detecting community structure from coherent oscillation of excitable systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(1), pages 164-170.
    20. Zhang, Dayong & Men, Hao & Zhang, Zhaoxin, 2024. "Assessing the stability of collaboration networks: A structural cohesion analysis perspective," Journal of Informetrics, Elsevier, vol. 18(1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:211:y:2011:i:2:p:221-231. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.