IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v204y2010i2p245-250.html
   My bibliography  Save this article

A heuristic for the one-dimensional cutting stock problem with usable leftover

Author

Listed:
  • Cui, Yaodong
  • Yang, Yuli

Abstract

A heuristic algorithm for the one-dimensional cutting stock problem with usable leftover (residual length) is presented. The algorithm consists of two procedures. The first is a linear programming procedure that fulfills the major portion of the item demand. The second is a sequential heuristic procedure that fulfills the remaining portion of the item demand. The algorithm can balance the cost of the consumed bars, the profit from leftovers and the profit from shorter stocks reduction. The computational results show that the algorithm performs better than a recently published algorithm.

Suggested Citation

  • Cui, Yaodong & Yang, Yuli, 2010. "A heuristic for the one-dimensional cutting stock problem with usable leftover," European Journal of Operational Research, Elsevier, vol. 204(2), pages 245-250, July.
  • Handle: RePEc:eee:ejores:v:204:y:2010:i:2:p:245-250
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00796-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    2. P. C. Gilmore & R. E. Gomory, 1961. "A Linear Programming Approach to the Cutting-Stock Problem," Operations Research, INFORMS, vol. 9(6), pages 849-859, December.
    3. Oliveira, Jose Fernando & Wascher, Gerhard, 2007. "Cutting and Packing," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1106-1108, December.
    4. Cherri, Adriana Cristina & Arenales, Marcos Nereu & Yanasse, Horacio Hideki, 2009. "The one-dimensional cutting stock problem with usable leftover - A heuristic approach," European Journal of Operational Research, Elsevier, vol. 196(3), pages 897-908, August.
    5. Gradisar, Miro & Resinovic, Gortan & Kljajic, Miroljub, 1999. "A hybrid approach for optimization of one-dimensional cutting," European Journal of Operational Research, Elsevier, vol. 119(3), pages 719-728, December.
    6. Gradisar, Miro & Kljajic, Miroljub & Resinovic, Gortan & Jesenko, Joze, 1999. "A sequential heuristic procedure for one-dimensional cutting," European Journal of Operational Research, Elsevier, vol. 114(3), pages 557-568, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Yaodong & Huang, Baixiong, 2012. "Reducing the number of cuts in generating three-staged cutting patterns," European Journal of Operational Research, Elsevier, vol. 218(2), pages 358-365.
    2. Santiago V. Ravelo & Cláudio N. Meneses & Maristela O. Santos, 2020. "Meta-heuristics for the one-dimensional cutting stock problem with usable leftover," Journal of Heuristics, Springer, vol. 26(4), pages 585-618, August.
    3. Cherri, Adriana Cristina & Cherri, Luiz Henrique & Oliveira, Beatriz Brito & Oliveira, José Fernando & Carravilla, Maria Antónia, 2023. "A stochastic programming approach to the cutting stock problem with usable leftovers," European Journal of Operational Research, Elsevier, vol. 308(1), pages 38-53.
    4. Yaodong Cui & Xiang Song & Yan Chen & Yi-Ping Cui, 2017. "New model and heuristic solution approach for one-dimensional cutting stock problem with usable leftovers," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(3), pages 269-280, March.
    5. Cherri, Adriana Cristina & Arenales, Marcos Nereu & Yanasse, Horacio Hideki & Poldi, Kelly Cristina & Gonçalves Vianna, Andréa Carla, 2014. "The one-dimensional cutting stock problem with usable leftovers – A survey," European Journal of Operational Research, Elsevier, vol. 236(2), pages 395-402.
    6. Lin Liu & Xinbao Liu & Jun Pei & Wenjuan Fan & Panos M. Pardalos, 2017. "A study on decision making of cutting stock with frustum of cone bars," Operational Research, Springer, vol. 17(1), pages 187-204, April.
    7. Haoqing Wang & Wen Yi, 2022. "Optimization Models for Reducing Off-Cuts of Raw Materials in Construction Site," Mathematics, MDPI, vol. 10(24), pages 1-16, December.
    8. D. N. Nascimento & S. A. Araujo & A. C. Cherri, 2022. "Integrated lot-sizing and one-dimensional cutting stock problem with usable leftovers," Annals of Operations Research, Springer, vol. 316(2), pages 785-803, September.
    9. Luka Tomat & Mirko Gradišar, 2017. "One-dimensional stock cutting: optimization of usable leftovers in consecutive orders," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 473-489, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cherri, Adriana Cristina & Arenales, Marcos Nereu & Yanasse, Horacio Hideki & Poldi, Kelly Cristina & Gonçalves Vianna, Andréa Carla, 2014. "The one-dimensional cutting stock problem with usable leftovers – A survey," European Journal of Operational Research, Elsevier, vol. 236(2), pages 395-402.
    2. Sierra-Paradinas, María & Soto-Sánchez, Óscar & Alonso-Ayuso, Antonio & Martín-Campo, F. Javier & Gallego, Micael, 2021. "An exact model for a slitting problem in the steel industry," European Journal of Operational Research, Elsevier, vol. 295(1), pages 336-347.
    3. Cui, Yaodong & Huang, Baixiong, 2012. "Reducing the number of cuts in generating three-staged cutting patterns," European Journal of Operational Research, Elsevier, vol. 218(2), pages 358-365.
    4. Melega, Gislaine Mara & de Araujo, Silvio Alexandre & Jans, Raf, 2018. "Classification and literature review of integrated lot-sizing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 1-19.
    5. Alexander Abuabara & Reinaldo Morabito, 2009. "Cutting optimization of structural tubes to build agricultural light aircrafts," Annals of Operations Research, Springer, vol. 169(1), pages 149-165, July.
    6. Chiranjit Changdar & Rajat Kumar Pal & Ghanshaym Singha Mahapatra & Abhinandan Khan, 2020. "A genetic algorithm based approach to solve multi-resource multi-objective knapsack problem for vegetable wholesalers in fuzzy environment," Operational Research, Springer, vol. 20(3), pages 1321-1352, September.
    7. Yaodong Cui & Xiang Song & Yan Chen & Yi-Ping Cui, 2017. "New model and heuristic solution approach for one-dimensional cutting stock problem with usable leftovers," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(3), pages 269-280, March.
    8. Erjavec, J. & Gradisar, M. & Trkman, P., 2012. "Assessment of stock size to minimize cutting stock production costs," International Journal of Production Economics, Elsevier, vol. 135(1), pages 170-176.
    9. Keehoon Kwon & Doyeong Kim & Sunkuk Kim, 2021. "Cutting Waste Minimization of Rebar for Sustainable Structural Work: A Systematic Literature Review," Sustainability, MDPI, vol. 13(11), pages 1-21, May.
    10. Luka Tomat & Mirko Gradišar, 2017. "One-dimensional stock cutting: optimization of usable leftovers in consecutive orders," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(2), pages 473-489, June.
    11. Trkman, Peter & Gradisar, Miro, 2007. "One-dimensional cutting stock optimization in consecutive time periods," European Journal of Operational Research, Elsevier, vol. 179(2), pages 291-301, June.
    12. Santiago V. Ravelo & Cláudio N. Meneses & Maristela O. Santos, 2020. "Meta-heuristics for the one-dimensional cutting stock problem with usable leftover," Journal of Heuristics, Springer, vol. 26(4), pages 585-618, August.
    13. Cherri, Adriana Cristina & Arenales, Marcos Nereu & Yanasse, Horacio Hideki, 2009. "The one-dimensional cutting stock problem with usable leftover - A heuristic approach," European Journal of Operational Research, Elsevier, vol. 196(3), pages 897-908, August.
    14. Dongho Lee & Seunghyun Son & Doyeong Kim & Sunkuk Kim, 2020. "Special-Length-Priority Algorithm to Minimize Reinforcing Bar-Cutting Waste for Sustainable Construction," Sustainability, MDPI, vol. 12(15), pages 1-15, July.
    15. François Clautiaux & Cláudio Alves & José Valério de Carvalho & Jürgen Rietz, 2011. "New Stabilization Procedures for the Cutting Stock Problem," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 530-545, November.
    16. Gregory S. Taylor & Yupo Chan & Ghulam Rasool, 2017. "A three-dimensional bin-packing model: exact multicriteria solution and computational complexity," Annals of Operations Research, Springer, vol. 251(1), pages 397-427, April.
    17. Reinaldo Morabito & Vitória Pureza, 2010. "A heuristic approach based on dynamic programming and and/or-graph search for the constrained two-dimensional guillotine cutting problem," Annals of Operations Research, Springer, vol. 179(1), pages 297-315, September.
    18. Herbert Meyr & Mirko Kiel, 2022. "Minimizing setups and waste when printing labels of consumer goods," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 733-761, September.
    19. B. S. C. Campello & C. T. L. S. Ghidini & A. O. C. Ayres & W. A. Oliveira, 2022. "A residual recombination heuristic for one-dimensional cutting stock problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 194-220, April.
    20. Dell’Amico, Mauro & Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2019. "Mathematical models and decomposition methods for the multiple knapsack problem," European Journal of Operational Research, Elsevier, vol. 274(3), pages 886-899.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:204:y:2010:i:2:p:245-250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.