IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v203y2010i3p714-723.html
   My bibliography  Save this article

Solving a minimum-power covering problem with overlap constraint for cellular network design

Author

Listed:
  • Chen, Lei
  • Yuan, Di

Abstract

We consider a type of covering problem in cellular networks. Given the locations of base stations, the problem amounts to determining cell coverage at minimum cost in terms of the power usage. Overlap between adjacent cells is required in order to support handover. The problem we consider is NP-hard. We present integer linear models and study the strengths of their continuous relaxations. Preprocessing is used to reduce problem size and tighten the models. Moreover, we design a tabu search algorithm for finding near-optimal solutions effectively and time-efficiently. We report computational results for both synthesized instances and networks originating from real planning scenarios. The results show that one of the integer models leads to tight bounds, and the tabu search algorithm generates high-quality solutions for large instances in short computing time.

Suggested Citation

  • Chen, Lei & Yuan, Di, 2010. "Solving a minimum-power covering problem with overlap constraint for cellular network design," European Journal of Operational Research, Elsevier, vol. 203(3), pages 714-723, June.
  • Handle: RePEc:eee:ejores:v:203:y:2010:i:3:p:714-723
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00633-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rudolf Mathar & Michael Schmeink, 2001. "Optimal Base Station Positioning and Channel Assignment for 3G Mobile Networks by Integer Programming," Annals of Operations Research, Springer, vol. 107(1), pages 225-236, October.
    2. Touhami, Souheyl & Bourjolly, Jean-Marie & Laporte, Gilbert, 2009. "Partial integration of frequency allocation within antenna positioning in GSM mobile networks," European Journal of Operational Research, Elsevier, vol. 193(2), pages 541-551, March.
    3. Zhang, Hong-Yuan & Xi, Yu-Geng & Gu, Han-Yu, 2007. "A rolling window optimization method for large-scale WCDMA base stations planning problem," European Journal of Operational Research, Elsevier, vol. 183(1), pages 370-383, November.
    4. Juttner, Alpar & Orban, Andras & Fiala, Zoltan, 2005. "Two new algorithms for UMTS access network topology design," European Journal of Operational Research, Elsevier, vol. 164(2), pages 456-474, July.
    5. Olinick, Eli V. & Rosenberger, Jay M., 2008. "Optimizing revenue in CDMA networks under demand uncertainty," European Journal of Operational Research, Elsevier, vol. 186(2), pages 812-825, April.
    6. Joakim Kalvenes & Jeffery Kennington & Eli Olinick, 2006. "Base Station Location and Service Assignments in W--CDMA Networks," INFORMS Journal on Computing, INFORMS, vol. 18(3), pages 366-376, August.
    7. Edoardo Amaldi & Pietro Belotti & Antonio Capone & Federico Malucelli, 2006. "Optimizing base station location and configuration in UMTS networks," Annals of Operations Research, Springer, vol. 146(1), pages 135-151, September.
    8. Fischetti, Matteo & Romanin Jacur, Giorgio & Jose Salazar Gonzalez, Juan, 2003. "Optimisation of the interconnecting network of a UMTS radio mobile telephone system," European Journal of Operational Research, Elsevier, vol. 144(1), pages 56-67, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonas Christoffer Villumsen & Joe Naoum‐Sawaya, 2016. "Column generation for stochastic green telecommunication network planning with switchable base stations," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(5), pages 351-366, August.
    2. Joe Naoum‐Sawaya & Samir Elhedhli, 2010. "A nested benders decomposition approach for telecommunication network planning," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(6), pages 519-539, September.
    3. Jitamitra Desai & Shalinee Kishore, 2017. "A global optimization framework for distributed antenna location in CDMA cellular networks," Annals of Operations Research, Springer, vol. 253(1), pages 169-191, June.
    4. Yiting Xing & Ling Li & Zhuming Bi & Marzena Wilamowska‐Korsak & Li Zhang, 2013. "Operations Research (OR) in Service Industries: A Comprehensive Review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 30(3), pages 300-353, May.
    5. Jay M. Rosenberger & Eli V. Olinick, 2007. "Robust tower location for code division multiple access networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(2), pages 151-161, March.
    6. Olinick, Eli V. & Rosenberger, Jay M., 2008. "Optimizing revenue in CDMA networks under demand uncertainty," European Journal of Operational Research, Elsevier, vol. 186(2), pages 812-825, April.
    7. Touhami, Souheyl & Bourjolly, Jean-Marie & Laporte, Gilbert, 2009. "Partial integration of frequency allocation within antenna positioning in GSM mobile networks," European Journal of Operational Research, Elsevier, vol. 193(2), pages 541-551, March.
    8. Fabio D'Andreagiovanni & Carlo Mannino & Antonio Sassano, 2010. "GUB Covers and Power-Indexed Formulations for Wireless Network Design," DIS Technical Reports 2010-14, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    9. Karen Aardal & Stan Hoesel & Arie Koster & Carlo Mannino & Antonio Sassano, 2007. "Models and solution techniques for frequency assignment problems," Annals of Operations Research, Springer, vol. 153(1), pages 79-129, September.
    10. Fabio D'Andreagiovanni & Carlo Mannino & Antonio Sassano, 2009. "A Power-Indexed Formulation for Wireless Network Design," DIS Technical Reports 2009-14, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    11. Andreas Eisenblätter & Hans-Florian Geerdes & Thorsten Koch & Alexander Martin & Roland Wessäly, 2006. "UMTS radio network evaluation and optimization beyond snapshots," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(1), pages 1-29, February.
    12. Doukidis, Georgios I. & Pramatari, Katerina & Lekakos, Georgios, 2008. "OR and the management of electronic services," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1296-1309, June.
    13. Seungseob Lee & SuKyoung Lee & Kyungsoo Kim & Yoon Hyuk Kim, 2015. "Base Station Placement Algorithm for Large-Scale LTE Heterogeneous Networks," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-19, October.
    14. M Labbé & I Rodríguez-Martin & J J Salazar-González, 2004. "A branch-and-cut algorithm for the plant-cycle location problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(5), pages 513-520, May.
    15. Min Wook Kang & Yun Won Chung, 2017. "An Efficient Energy Saving Scheme for Base Stations in 5G Networks with Separated Data and Control Planes Using Particle Swarm Optimization," Energies, MDPI, vol. 10(9), pages 1-28, September.
    16. Sasthi Ghosh & Roger Whitaker & Stuart Allen & Steve Hurley, 2012. "Dynamic data resolution to improve the tractability of UMTS network planning," Annals of Operations Research, Springer, vol. 201(1), pages 197-227, December.
    17. Demange, Marc & Ekim, Tınaz & Ries, Bernard & Tanasescu, Cerasela, 2015. "On some applications of the selective graph coloring problem," European Journal of Operational Research, Elsevier, vol. 240(2), pages 307-314.
    18. Jochem, Patrick & Schönfelder, Martin & Fichtner, Wolf, 2015. "An efficient two-stage algorithm for decentralized scheduling of micro-CHP units," European Journal of Operational Research, Elsevier, vol. 245(3), pages 862-874.
    19. Dinçer Konur & Hadi Farhangi & Cihan H. Dagli, 2016. "A multi-objective military system of systems architecting problem with inflexible and flexible systems: formulation and solution methods," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(4), pages 967-1006, October.
    20. Joakim Kalvenes & Jeffery Kennington & Eli Olinick, 2006. "Base Station Location and Service Assignments in W--CDMA Networks," INFORMS Journal on Computing, INFORMS, vol. 18(3), pages 366-376, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:203:y:2010:i:3:p:714-723. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.