IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v203y2010i1p22-31.html
   My bibliography  Save this article

New multi-objective method to solve reentrant hybrid flow shop scheduling problem

Author

Listed:
  • Dugardin, Frédéric
  • Yalaoui, Farouk
  • Amodeo, Lionel

Abstract

This paper focuses on the multi-objective resolution of a reentrant hybrid flow shop scheduling problem (RHFS). In our case the two objectives are: the maximization of the utilization rate of the bottleneck and the minimization of the maximum completion time. This problem is solved with a new multi-objective genetic algorithm called L-NSGA which uses the Lorenz dominance relationship. The results of L-NSGA are compared with NSGA2, SPEA2 and an exact method. A stochastic model of the system is proposed and used with a discrete event simulation module. A test protocol is applied to compare the four methods on various configurations of the problem. The comparison is established using two standard multi-objective metrics. The Lorenz dominance relationship provides a stronger selection than the Pareto dominance and gives better results than the latter. The computational tests show that L-NSGA provides better solutions than NSGA2 and SPEA2; moreover, its solutions are closer to the optimal front. The efficiency of our method is verified in an industrial field-experiment.

Suggested Citation

  • Dugardin, Frédéric & Yalaoui, Farouk & Amodeo, Lionel, 2010. "New multi-objective method to solve reentrant hybrid flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 203(1), pages 22-31, May.
  • Handle: RePEc:eee:ejores:v:203:y:2010:i:1:p:22-31
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00499-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patrice Perny & Olivier Spanjaard & Louis-Xavier Storme, 2006. "A decision-theoretic approach to robust optimization in multivalued graphs," Annals of Operations Research, Springer, vol. 147(1), pages 317-341, October.
    2. Miragliotta, Giovanni & Perona, Marco, 2005. "Decentralised, multi-objective driven scheduling for reentrant shops: A conceptual development and a test case," European Journal of Operational Research, Elsevier, vol. 167(3), pages 644-662, December.
    3. Yang, Dar-Li & Kuo, Wen-Hung & Chern, Maw-Sheng, 2008. "Multi-family scheduling in a two-machine reentrant flow shop with setups," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1160-1170, June.
    4. Graves, Stephen C., 1983. "Scheduling of re-entrant flow shops," Working papers 1438-83., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    5. Yura, Kenji, 1999. "Cyclic scheduling for re-entrant manufacturing systems," International Journal of Production Economics, Elsevier, vol. 60(1), pages 523-528, April.
    6. Zoghby, Jeriad & Wesley Barnes, J. & Hasenbein, John J., 2005. "Modeling the reentrant job shop scheduling problem with setups for metaheuristic searches," European Journal of Operational Research, Elsevier, vol. 167(2), pages 336-348, December.
    7. Monch, Lars & Schabacker, Rene & Pabst, Detlef & Fowler, John W., 2007. "Genetic algorithm-based subproblem solution procedures for a modified shifting bottleneck heuristic for complex job shops," European Journal of Operational Research, Elsevier, vol. 177(3), pages 2100-2118, March.
    8. Kostreva, Michael M. & Ogryczak, Wlodzimierz & Wierzbicki, Adam, 2004. "Equitable aggregations and multiple criteria analysis," European Journal of Operational Research, Elsevier, vol. 158(2), pages 362-377, October.
    9. Hanan Luss, 1999. "On Equitable Resource Allocation Problems: A Lexicographic Minimax Approach," Operations Research, INFORMS, vol. 47(3), pages 361-378, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenlin Yuan & Xueyan Yu & Chengguo Su & Denghua Yan & Zening Wu, 2020. "A Multi-Timescale Integrated Operation Model for Balancing Power Generation, Ecology, and Water Supply of Reservoir Operation," Energies, MDPI, vol. 14(1), pages 1-21, December.
    2. Gheisariha, Elmira & Tavana, Madjid & Jolai, Fariborz & Rabiee, Meysam, 2021. "A simulation–optimization model for solving flexible flow shop scheduling problems with rework and transportation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 180(C), pages 152-178.
    3. Bozorgirad, Mir Abbas & Logendran, Rasaratnam, 2013. "Bi-criteria group scheduling in hybrid flowshops," International Journal of Production Economics, Elsevier, vol. 145(2), pages 599-612.
    4. Jianxin Fang & Brenda Cheang & Andrew Lim, 2023. "Problems and Solution Methods of Machine Scheduling in Semiconductor Manufacturing Operations: A Survey," Sustainability, MDPI, vol. 15(17), pages 1-44, August.
    5. Karsu, Özlem & Morton, Alec, 2015. "Inequity averse optimization in operational research," European Journal of Operational Research, Elsevier, vol. 245(2), pages 343-359.
    6. Cheng, Mingbao & Tadikamalla, Pandu R. & Shang, Jennifer & Zhang, Shaqing, 2014. "Bicriteria hierarchical optimization of two-machine flow shop scheduling problem with time-dependent deteriorating jobs," European Journal of Operational Research, Elsevier, vol. 234(3), pages 650-657.
    7. Wang, Kai & Qin, Hu & Huang, Yun & Luo, Mengwen & Zhou, Lei, 2021. "Surgery scheduling in outpatient procedure centre with re-entrant patient flow and fuzzy service times," Omega, Elsevier, vol. 102(C).
    8. Lei Liu & Marcello Urgo, 2024. "Robust scheduling in a two-machine re-entrant flow shop to minimise the value-at-risk of the makespan: branch-and-bound and heuristic algorithms based on Markovian activity networks and phase-type dis," Annals of Operations Research, Springer, vol. 338(1), pages 741-764, July.
    9. Shahvari, Omid & Logendran, Rasaratnam, 2016. "Hybrid flow shop batching and scheduling with a bi-criteria objective," International Journal of Production Economics, Elsevier, vol. 179(C), pages 239-258.
    10. Andreas C. Nearchou, 2018. "Multicriteria scheduling optimization using an elitist multiobjective population heuristic: the h-NSDE algorithm," Journal of Heuristics, Springer, vol. 24(6), pages 817-851, December.
    11. Wieslaw Kubiak & Yanling Feng & Guo Li & Suresh P. Sethi & Chelliah Sriskandarajah, 2020. "Efficient algorithms for flexible job shop scheduling with parallel machines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(4), pages 272-288, June.
    12. S. M. Mousavi & I. Mahdavi & J. Rezaeian & M. Zandieh, 2018. "An efficient bi-objective algorithm to solve re-entrant hybrid flow shop scheduling with learning effect and setup times," Operational Research, Springer, vol. 18(1), pages 123-158, April.
    13. Maedeh Fasihi & Reza Tavakkoli-Moghaddam & Fariborz Jolai, 2023. "A bi-objective re-entrant permutation flow shop scheduling problem: minimizing the makespan and maximum tardiness," Operational Research, Springer, vol. 23(2), pages 1-41, June.
    14. Neufeld, Janis S. & Schulz, Sven & Buscher, Udo, 2023. "A systematic review of multi-objective hybrid flow shop scheduling," European Journal of Operational Research, Elsevier, vol. 309(1), pages 1-23.
    15. Chettha Chamnanlor & Kanchana Sethanan & Mitsuo Gen & Chen-Fu Chien, 2017. "Embedding ant system in genetic algorithm for re-entrant hybrid flow shop scheduling problems with time window constraints," Journal of Intelligent Manufacturing, Springer, vol. 28(8), pages 1915-1931, December.
    16. Yang-Kuei Lin & Tzu-Yueh Yin, 2022. "Generating bicriteria schedules for correlated parallel machines involving tardy jobs and weighted completion time," Annals of Operations Research, Springer, vol. 319(2), pages 1655-1688, December.
    17. Simge Yelkenci Kose & Ozcan Kilincci, 2020. "A multi-objective hybrid evolutionary approach for buffer allocation in open serial production lines," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 33-51, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maedeh Fasihi & Reza Tavakkoli-Moghaddam & Fariborz Jolai, 2023. "A bi-objective re-entrant permutation flow shop scheduling problem: minimizing the makespan and maximum tardiness," Operational Research, Springer, vol. 23(2), pages 1-41, June.
    2. Kasin Ransikarbum & Scott J. Mason, 2016. "Multiple-objective analysis of integrated relief supply and network restoration in humanitarian logistics operations," International Journal of Production Research, Taylor & Francis Journals, vol. 54(1), pages 49-68, January.
    3. Mut, Murat & Wiecek, Margaret M., 2011. "Generalized equitable preference in multiobjective programming," European Journal of Operational Research, Elsevier, vol. 212(3), pages 535-551, August.
    4. Ogryczak, Wlodzimierz & Wierzbicki, Adam & Milewski, Marcin, 2008. "A multi-criteria approach to fair and efficient bandwidth allocation," Omega, Elsevier, vol. 36(3), pages 451-463, June.
    5. Li, Linda & Firouz, Mohammad & Ahmed, Abdulaziz & Delen, Dursun, 2023. "On the Egalitarian–Utilitarian spectrum in stochastic capacitated resource allocation problems," International Journal of Production Economics, Elsevier, vol. 262(C).
    6. Allahverdi, Ali & Ng, C.T. & Cheng, T.C.E. & Kovalyov, Mikhail Y., 2008. "A survey of scheduling problems with setup times or costs," European Journal of Operational Research, Elsevier, vol. 187(3), pages 985-1032, June.
    7. Yu, Tae-Sun & Pinedo, Michael, 2020. "Flow shops with reentry: Reversibility properties and makespan optimal schedules," European Journal of Operational Research, Elsevier, vol. 282(2), pages 478-490.
    8. Zhang Jiangao & Shitao Yang, 2016. "On the Lexicographic Centre of Multiple Objective Optimization," Journal of Optimization Theory and Applications, Springer, vol. 168(2), pages 600-614, February.
    9. Choi, Seong-Woo & Kim, Yeong-Dae, 2009. "Minimizing total tardiness on a two-machine re-entrant flowshop," European Journal of Operational Research, Elsevier, vol. 199(2), pages 375-384, December.
    10. Liu, Songsong & Papageorgiou, Lazaros G., 2013. "Multiobjective optimisation of production, distribution and capacity planning of global supply chains in the process industry," Omega, Elsevier, vol. 41(2), pages 369-382.
    11. David Rea & Craig Froehle & Suzanne Masterson & Brian Stettler & Gregory Fermann & Arthur Pancioli, 2021. "Unequal but Fair: Incorporating Distributive Justice in Operational Allocation Models," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2304-2320, July.
    12. Gabrielle Demange, 2021. "On the resolution of cross-liabilities," PSE Working Papers halshs-03151128, HAL.
    13. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    14. B. Golany & N. Goldberg & U. Rothblum, 2015. "Allocating multiple defensive resources in a zero-sum game setting," Annals of Operations Research, Springer, vol. 225(1), pages 91-109, February.
    15. Amy Givler Chapman & John E. Mitchell, 2018. "A fair division approach to humanitarian logistics inspired by conditional value-at-risk," Annals of Operations Research, Springer, vol. 262(1), pages 133-151, March.
    16. Spencer Leitch & Zhiyuan Wei, 2024. "Improving spatial access to healthcare facilities: an integrated approach with spatial analysis and optimization modeling," Annals of Operations Research, Springer, vol. 341(2), pages 1057-1074, October.
    17. Włodzimierz Ogryczak, 2010. "Conditional median as a robust solution concept for uncapacitated location problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(1), pages 271-285, July.
    18. Dukkanci, Okan & Karsu, Özlem & Kara, Bahar Y., 2022. "Planning sustainable routes: Economic, environmental and welfare concerns," European Journal of Operational Research, Elsevier, vol. 301(1), pages 110-123.
    19. Berghman, Lotte & Leus, Roel, 2015. "Practical solutions for a dock assignment problem with trailer transportation," European Journal of Operational Research, Elsevier, vol. 246(3), pages 787-799.
    20. J. N. Hooker & H. P. Williams, 2012. "Combining Equity and Utilitarianism in a Mathematical Programming Model," Management Science, INFORMS, vol. 58(9), pages 1682-1693, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:203:y:2010:i:1:p:22-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.