IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v186y2008i1p28-40.html
   My bibliography  Save this article

Generalized nonsmooth invexity over cones in vector optimization

Author

Listed:
  • Suneja, S.K.
  • Khurana, Seema
  • Vani

Abstract

No abstract is available for this item.

Suggested Citation

  • Suneja, S.K. & Khurana, Seema & Vani, 2008. "Generalized nonsmooth invexity over cones in vector optimization," European Journal of Operational Research, Elsevier, vol. 186(1), pages 28-40, April.
  • Handle: RePEc:eee:ejores:v:186:y:2008:i:1:p:28-40
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00179-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khurana, Seema, 2005. "Symmetric duality in multiobjective programming involving generalized cone-invex functions," European Journal of Operational Research, Elsevier, vol. 165(3), pages 592-597, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hachem Slimani & Mohammed-Said Radjef, 2016. "Generalized Fritz John optimality in nonlinear programming in the presence of equality and inequality constraints," Operational Research, Springer, vol. 16(2), pages 349-364, July.
    2. Jiawei Chen & Elisabeth Köbis & Jen-Chih Yao, 2019. "Optimality Conditions and Duality for Robust Nonsmooth Multiobjective Optimization Problems with Constraints," Journal of Optimization Theory and Applications, Springer, vol. 181(2), pages 411-436, May.
    3. M. Arana-Jiménez & G. Ruiz-Garzón & R. Osuna-Gómez & B. Hernández-Jiménez, 2013. "Duality and a Characterization of Pseudoinvexity for Pareto and Weak Pareto Solutions in Nondifferentiable Multiobjective Programming," Journal of Optimization Theory and Applications, Springer, vol. 156(2), pages 266-277, February.
    4. Li Tang & Ke Zhao, 2013. "Optimality conditions for a class of composite multiobjective nonsmooth optimization problems," Journal of Global Optimization, Springer, vol. 57(2), pages 399-414, October.
    5. Slimani, Hachem & Radjef, Mohammed Said, 2010. "Nondifferentiable multiobjective programming under generalized dI-invexity," European Journal of Operational Research, Elsevier, vol. 202(1), pages 32-41, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Gupta & N. Kailey, 2013. "Second-order multiobjective symmetric duality involving cone-bonvex functions," Journal of Global Optimization, Springer, vol. 55(1), pages 125-140, January.
    2. Jayswal, Anurag & Singh, Shipra & Kurdi, Alia, 2016. "Multitime multiobjective variational problems and vector variational-like inequalities," European Journal of Operational Research, Elsevier, vol. 254(3), pages 739-745.
    3. Kim, Moon Hee & Kim, Do Sang, 2008. "Non-differentiable symmetric duality for multiobjective programming with cone constraints," European Journal of Operational Research, Elsevier, vol. 188(3), pages 652-661, August.
    4. N. Kailey & Sonali Sethi & Vivek Dhingra, 2024. "Correspondence between a new pair of nondifferentiable mixed dual vector programs and higher-order generalized convexity," OPSEARCH, Springer;Operational Research Society of India, vol. 61(3), pages 1507-1540, September.
    5. Li Tang & Ke Zhao, 2013. "Optimality conditions for a class of composite multiobjective nonsmooth optimization problems," Journal of Global Optimization, Springer, vol. 57(2), pages 399-414, October.
    6. Ahmad, I. & Sharma, Sarita, 2008. "Symmetric duality for multiobjective fractional variational problems involving cones," European Journal of Operational Research, Elsevier, vol. 188(3), pages 695-704, August.
    7. Mishra, S.K. & Lai, K.K., 2007. "Second order symmetric duality in multiobjective programming involving generalized cone-invex functions," European Journal of Operational Research, Elsevier, vol. 178(1), pages 20-26, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:186:y:2008:i:1:p:28-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.