IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v155y2004i2p380-401.html
   My bibliography  Save this article

A tabu search algorithm for the multi-stage parallel machine problem with limited buffer capacities

Author

Listed:
  • Wardono, Bagas
  • Fathi, Yahya

Abstract

No abstract is available for this item.

Suggested Citation

  • Wardono, Bagas & Fathi, Yahya, 2004. "A tabu search algorithm for the multi-stage parallel machine problem with limited buffer capacities," European Journal of Operational Research, Elsevier, vol. 155(2), pages 380-401, June.
  • Handle: RePEc:eee:ejores:v:155:y:2004:i:2:p:380-401
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(02)00873-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert J. Wittrock, 1988. "An Adaptable Scheduling Algorithm for Flexible Flow Lines," Operations Research, INFORMS, vol. 36(3), pages 445-453, June.
    2. Tadeusz J. Sawik, 1993. "A scheduling algorithm for flexible flow lines with limited intermediate buffers," Applied Stochastic Models and Data Analysis, John Wiley & Sons, vol. 9(2), pages 127-138, June.
    3. M. R. Garey & D. S. Johnson & Ravi Sethi, 1976. "The Complexity of Flowshop and Jobshop Scheduling," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 117-129, May.
    4. Nowicki, Eugeniusz, 1999. "The permutation flow shop with buffers: A tabu search approach," European Journal of Operational Research, Elsevier, vol. 116(1), pages 205-219, July.
    5. Nowicki, Eugeniusz & Smutnicki, Czeslaw, 1998. "The flow shop with parallel machines: A tabu search approach," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 226-253, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Niu, Qun & Zhou, Taijin & Fei, Minrui & Wang, Bing, 2012. "An efficient quantum immune algorithm to minimize mean flow time for hybrid flow shop problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 84(C), pages 1-25.
    2. Yong Wang & Yuting Wang & Yuyan Han, 2023. "A Variant Iterated Greedy Algorithm Integrating Multiple Decoding Rules for Hybrid Blocking Flow Shop Scheduling Problem," Mathematics, MDPI, vol. 11(11), pages 1-25, May.
    3. Quadt, Daniel & Kuhn, Heinrich, 2007. "A taxonomy of flexible flow line scheduling procedures," European Journal of Operational Research, Elsevier, vol. 178(3), pages 686-698, May.
    4. Quadt, Daniel & Kuhn, Heinrich, 2007. "Batch scheduling of jobs with identical process times on flexible flow lines," International Journal of Production Economics, Elsevier, vol. 105(2), pages 385-401, February.
    5. Ruiz, Rubén & Vázquez-Rodríguez, José Antonio, 2010. "The hybrid flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 205(1), pages 1-18, August.
    6. Torabi, S.A. & Fatemi Ghomi, S.M.T. & Karimi, B., 2006. "A hybrid genetic algorithm for the finite horizon economic lot and delivery scheduling in supply chains," European Journal of Operational Research, Elsevier, vol. 173(1), pages 173-189, August.
    7. Ming Liu & Xuenan Yang & Jiantong Zhang & Chengbin Chu, 2017. "Scheduling a tempered glass manufacturing system: a three-stage hybrid flow shop model," International Journal of Production Research, Taylor & Francis Journals, vol. 55(20), pages 6084-6107, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quadt, Daniel & Kuhn, Heinrich, 2007. "A taxonomy of flexible flow line scheduling procedures," European Journal of Operational Research, Elsevier, vol. 178(3), pages 686-698, May.
    2. Quadt, Daniel & Kuhn, Heinrich, 2007. "Batch scheduling of jobs with identical process times on flexible flow lines," International Journal of Production Economics, Elsevier, vol. 105(2), pages 385-401, February.
    3. Ruiz, Rubén & Vázquez-Rodríguez, José Antonio, 2010. "The hybrid flow shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 205(1), pages 1-18, August.
    4. Chen, Lu & Bostel, Nathalie & Dejax, Pierre & Cai, Jianguo & Xi, Lifeng, 2007. "A tabu search algorithm for the integrated scheduling problem of container handling systems in a maritime terminal," European Journal of Operational Research, Elsevier, vol. 181(1), pages 40-58, August.
    5. Fernandez-Viagas, Victor & Talens, Carla & Framinan, Jose M., 2022. "Assembly flowshop scheduling problem: Speed-up procedure and computational evaluation," European Journal of Operational Research, Elsevier, vol. 299(3), pages 869-882.
    6. Kurz, Mary E. & Askin, Ronald G., 2003. "Comparing scheduling rules for flexible flow lines," International Journal of Production Economics, Elsevier, vol. 85(3), pages 371-388, September.
    7. Kurz, Mary E. & Askin, Ronald G., 2004. "Scheduling flexible flow lines with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 159(1), pages 66-82, November.
    8. Fernandez-Viagas, Victor & Molina-Pariente, Jose M. & Framinan, Jose M., 2020. "Generalised accelerations for insertion-based heuristics in permutation flowshop scheduling," European Journal of Operational Research, Elsevier, vol. 282(3), pages 858-872.
    9. Bagchi, Tapan P. & Gupta, Jatinder N.D. & Sriskandarajah, Chelliah, 2006. "A review of TSP based approaches for flowshop scheduling," European Journal of Operational Research, Elsevier, vol. 169(3), pages 816-854, March.
    10. S. S. Panwalkar & Christos Koulamas, 2019. "The evolution of schematic representations of flow shop scheduling problems," Journal of Scheduling, Springer, vol. 22(4), pages 379-391, August.
    11. Thornton, Henry W. & Hunsucker, John L., 2004. "A new heuristic for minimal makespan in flow shops with multiple processors and no intermediate storage," European Journal of Operational Research, Elsevier, vol. 152(1), pages 96-114, January.
    12. Mehravaran, Yasaman & Logendran, Rasaratnam, 2012. "Non-permutation flowshop scheduling in a supply chain with sequence-dependent setup times," International Journal of Production Economics, Elsevier, vol. 135(2), pages 953-963.
    13. Lin, Hung-Tso & Liao, Ching-Jong, 2003. "A case study in a two-stage hybrid flow shop with setup time and dedicated machines," International Journal of Production Economics, Elsevier, vol. 86(2), pages 133-143, November.
    14. Zhen Song & Håkan Schunnesson & Mikael Rinne & John Sturgul, 2015. "Intelligent Scheduling for Underground Mobile Mining Equipment," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-21, June.
    15. Zhengcai Cao & Lijie Zhou & Biao Hu & Chengran Lin, 2019. "An Adaptive Scheduling Algorithm for Dynamic Jobs for Dealing with the Flexible Job Shop Scheduling Problem," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(3), pages 299-309, June.
    16. Jianxin Fang & Brenda Cheang & Andrew Lim, 2023. "Problems and Solution Methods of Machine Scheduling in Semiconductor Manufacturing Operations: A Survey," Sustainability, MDPI, vol. 15(17), pages 1-44, August.
    17. Shen, Liji & Buscher, Udo, 2012. "Solving the serial batching problem in job shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 221(1), pages 14-26.
    18. Wang, Ling & Sun, Lin-Yan & Sun, Lin-Hui & Wang, Ji-Bo, 2010. "On three-machine flow shop scheduling with deteriorating jobs," International Journal of Production Economics, Elsevier, vol. 125(1), pages 185-189, May.
    19. Gupta, Jatinder N.D. & Koulamas, Christos & Kyparisis, George J., 2006. "Performance guarantees for flowshop heuristics to minimize makespan," European Journal of Operational Research, Elsevier, vol. 169(3), pages 865-872, March.
    20. Vo[ss], Stefan & Witt, Andreas, 2007. "Hybrid flow shop scheduling as a multi-mode multi-project scheduling problem with batching requirements: A real-world application," International Journal of Production Economics, Elsevier, vol. 105(2), pages 445-458, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:155:y:2004:i:2:p:380-401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.