IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v152y2004i1p148-158.html
   My bibliography  Save this article

A threshold accepting metaheuristic for the heterogeneous fixed fleet vehicle routing problem

Author

Listed:
  • Tarantilis, C. D.
  • Kiranoudis, C. T.
  • Vassiliadis, V. S.

Abstract

No abstract is available for this item.

Suggested Citation

  • Tarantilis, C. D. & Kiranoudis, C. T. & Vassiliadis, V. S., 2004. "A threshold accepting metaheuristic for the heterogeneous fixed fleet vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 152(1), pages 148-158, January.
  • Handle: RePEc:eee:ejores:v:152:y:2004:i:1:p:148-158
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(02)00669-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. Clarke & J. W. Wright, 1964. "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, INFORMS, vol. 12(4), pages 568-581, August.
    2. G. A. Croes, 1958. "A Method for Solving Traveling-Salesman Problems," Operations Research, INFORMS, vol. 6(6), pages 791-812, December.
    3. Paessens, H., 1988. "The savings algorithm for the vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 34(3), pages 336-344, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C D Tarantilis & C T Kiranoudis & V S Vassiliadis, 2003. "A list based threshold accepting metaheuristic for the heterogeneous fixed fleet vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(1), pages 65-71, January.
    2. Tarantilis, C.D. & Kiranoudis, C.T., 2007. "A flexible adaptive memory-based algorithm for real-life transportation operations: Two case studies from dairy and construction sector," European Journal of Operational Research, Elsevier, vol. 179(3), pages 806-822, June.
    3. A A Juan & J Faulin & J Jorba & D Riera & D Masip & B Barrios, 2011. "On the use of Monte Carlo simulation, cache and splitting techniques to improve the Clarke and Wright savings heuristics," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(6), pages 1085-1097, June.
    4. M. Kritikos & G. Ioannou, 2017. "A greedy heuristic for the capacitated minimum spanning tree problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1223-1235, October.
    5. Castillo, Cristian & Alvarez-Palau, Eduard J. & Calvet, Laura & Panadero, Javier & Viu-Roig, Marta & Serena-Latre, Anna & Juan, Angel A., 2024. "Home healthcare in Spanish rural areas: Applying vehicle routing algorithms to health transport management," Socio-Economic Planning Sciences, Elsevier, vol. 92(C).
    6. Böhnlein, Dominik & Schweiger, Katharina & Tuma, Axel, 2011. "Multi-agent-based transport planning in the newspaper industry," International Journal of Production Economics, Elsevier, vol. 131(1), pages 146-157, May.
    7. Gilbert Laporte, 2009. "Fifty Years of Vehicle Routing," Transportation Science, INFORMS, vol. 43(4), pages 408-416, November.
    8. Sandra Zajac, 2018. "On a two-phase solution approach for the bi-objective k-dissimilar vehicle routing problem," Journal of Heuristics, Springer, vol. 24(3), pages 515-550, June.
    9. Zachariadis, Emmanouil E. & Tarantilis, Christos D. & Kiranoudis, Chris T., 2010. "An adaptive memory methodology for the vehicle routing problem with simultaneous pick-ups and deliveries," European Journal of Operational Research, Elsevier, vol. 202(2), pages 401-411, April.
    10. Briseida Sarasola & Karl Doerner & Verena Schmid & Enrique Alba, 2016. "Variable neighborhood search for the stochastic and dynamic vehicle routing problem," Annals of Operations Research, Springer, vol. 236(2), pages 425-461, January.
    11. Van Breedam, Alex, 2002. "A parametric analysis of heuristics for the vehicle routing problem with side-constraints," European Journal of Operational Research, Elsevier, vol. 137(2), pages 348-370, March.
    12. Vigo, Daniele, 1996. "A heuristic algorithm for the asymmetric capacitated vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 89(1), pages 108-126, February.
    13. Briseida Sarasola & Karl F. Doerner & Verena Schmid & Enrique Alba, 2016. "Variable neighborhood search for the stochastic and dynamic vehicle routing problem," Annals of Operations Research, Springer, vol. 236(2), pages 425-461, January.
    14. Mahdi Alinaghian & Komail Zamanlou & Mohammad S. Sabbagh, 2017. "A bi-objective mathematical model for two-dimensional loading time-dependent vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(11), pages 1422-1441, November.
    15. T Öncan & İ K Altınel, 2009. "Parametric enhancements of the Esau–Williams heuristic for the capacitated minimum spanning tree problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(2), pages 259-267, February.
    16. A Corominas & A García-Villoria & R Pastor, 2010. "Fine-tuning a parametric Clarke and Wright heuristic by means of EAGH (empirically adjusted greedy heuristics)," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(8), pages 1309-1314, August.
    17. L Zeng & H L Ong & K M Ng, 2007. "A generalized crossing local search method for solving vehicle routing problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(4), pages 528-532, April.
    18. Chiang, Wen-Chyuan & Russell, Robert A., 2004. "Integrating purchasing and routing in a propane gas supply chain," European Journal of Operational Research, Elsevier, vol. 154(3), pages 710-729, May.
    19. Kalayci, Can B. & Kulak, Osman & Günther, Hans-Otto, 2015. "A perturbation based variable neighborhood search heuristic for solving the Vehicle Routing Problem with Simultaneous Pickup and Delivery with Time LimitAuthor-Name: Polat, Olcay," European Journal of Operational Research, Elsevier, vol. 242(2), pages 369-382.
    20. Martin Schwardt & Kathrin Fischer, 2009. "Combined location-routing problems—a neural network approach," Annals of Operations Research, Springer, vol. 167(1), pages 253-269, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:152:y:2004:i:1:p:148-158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.