IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v135y2001i1p142-157.html
   My bibliography  Save this article

Interactive fuzzy programming for two-level linear and linear fractional production and assignment problems: A case study

Author

Listed:
  • Sakawa, Masatoshi
  • Nishizaki, Ichiro
  • Uemura, Yoshio

Abstract

No abstract is available for this item.

Suggested Citation

  • Sakawa, Masatoshi & Nishizaki, Ichiro & Uemura, Yoshio, 2001. "Interactive fuzzy programming for two-level linear and linear fractional production and assignment problems: A case study," European Journal of Operational Research, Elsevier, vol. 135(1), pages 142-157, November.
  • Handle: RePEc:eee:ejores:v:135:y:2001:i:1:p:142-157
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(00)00309-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. Wayne F. Bialas & Mark H. Karwan, 1984. "Two-Level Linear Programming," Management Science, INFORMS, vol. 30(8), pages 1004-1020, August.
    3. Jonathan F. Bard, 1983. "An Efficient Point Algorithm for a Linear Two-Stage Optimization Problem," Operations Research, INFORMS, vol. 31(4), pages 670-684, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mojtaba Borza & Azmin Sham Rambely & Mansour Saraj, 2014. "Two-Level Linear Programming Problems with Two Decision-Makers at the Upper Level: An Interactive Fuzzy Approach," Modern Applied Science, Canadian Center of Science and Education, vol. 8(4), pages 211-211, August.
    2. Amit Kumar & Anila Gupta, 2013. "Mehar’s methods for fuzzy assignment problems with restrictions," Fuzzy Information and Engineering, Springer, vol. 5(1), pages 27-44, March.
    3. Salma Iqbal & Naveed Yaqoob & Muhammad Gulistan, 2023. "An Investigation of Linear Diophantine Fuzzy Nonlinear Fractional Programming Problems," Mathematics, MDPI, vol. 11(15), pages 1-21, August.
    4. Duan, Yiduo & Wang, Wei & Zhuo, La & Liu, Yilin & Wu, Pute, 2024. "Regional blue and green water-saving potential and regulation paths for crop production: A case study in the Yellow River Basin," Agricultural Water Management, Elsevier, vol. 291(C).
    5. Ke, Ginger Y. & Bookbinder, James H., 2018. "Coordinating the discount policies for retailer, wholesaler, and less-than-truckload carrier under price-sensitive demand: A tri-level optimization approach," International Journal of Production Economics, Elsevier, vol. 196(C), pages 82-100.
    6. Cao, Dong & Chen, Mingyuan, 2006. "Capacitated plant selection in a decentralized manufacturing environment: A bilevel optimization approach," European Journal of Operational Research, Elsevier, vol. 169(1), pages 97-110, February.
    7. Amit Kumar & Anila Gupta, 2011. "Methods for solving fuzzy assignment problems and fuzzy travelling salesman problems with different membership functions," Fuzzy Information and Engineering, Springer, vol. 3(1), pages 3-21, March.
    8. Shih-Pin Chen & Wen-Lung Huang, 2014. "Solving Fuzzy Multiproduct Aggregate Production Planning Problems Based on Extension Principle," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2014, pages 1-18, August.
    9. Amin Mostafaee & Milan Hladík, 2020. "Optimal value bounds in interval fractional linear programming and revenue efficiency measuring," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(3), pages 963-981, September.
    10. P. K. De & Bharti Yadav, 2012. "A General Approach for Solving Assignment Problems Involving with Fuzzy Cost Coefficients," Modern Applied Science, Canadian Center of Science and Education, vol. 6(3), pages 1-2, March.
    11. Neha Gupta, 2019. "Optimization of fuzzy bi-objective fractional assignment problem," OPSEARCH, Springer;Operational Research Society of India, vol. 56(3), pages 1091-1102, September.
    12. Ahlatcioglu, Mehmet & Tiryaki, Fatma, 2007. "Interactive fuzzy programming for decentralized two-level linear fractional programming (DTLLFP) problems," Omega, Elsevier, vol. 35(4), pages 432-450, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sakawa, Masatoshi & Nishizaki, Ichiro & Uemura, Yoshio, 2002. "A decentralized two-level transportation problem in a housing material manufacturer: Interactive fuzzy programming approach," European Journal of Operational Research, Elsevier, vol. 141(1), pages 167-185, August.
    2. I. Nishizaki & M. Sakawa, 1999. "Stackelberg Solutions to Multiobjective Two-Level Linear Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 103(1), pages 161-182, October.
    3. Pramanik, Surapati & Roy, Tapan Kumar, 2007. "Fuzzy goal programming approach to multilevel programming problems," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1151-1166, January.
    4. Arora, S.R. & Gupta, Ritu, 2009. "Interactive fuzzy goal programming approach for bilevel programming problem," European Journal of Operational Research, Elsevier, vol. 194(2), pages 368-376, April.
    5. Mishra, Savita, 2007. "Weighting method for bi-level linear fractional programming problems," European Journal of Operational Research, Elsevier, vol. 183(1), pages 296-302, November.
    6. Ahlatcioglu, Mehmet & Tiryaki, Fatma, 2007. "Interactive fuzzy programming for decentralized two-level linear fractional programming (DTLLFP) problems," Omega, Elsevier, vol. 35(4), pages 432-450, August.
    7. S A Gabriel & Y Shim & A J Conejo & S de la Torre & R García-Bertrand, 2010. "A Benders decomposition method for discretely-constrained mathematical programs with equilibrium constraints," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(9), pages 1404-1419, September.
    8. Gabriel, Steven A. & Leuthold, Florian U., 2010. "Solving discretely-constrained MPEC problems with applications in electric power markets," Energy Economics, Elsevier, vol. 32(1), pages 3-14, January.
    9. Nishizaki, Ichiro & Hayashida, Tomohiro & Sekizaki, Shinya & Okabe, Junya, 2022. "Data envelopment analysis approaches for two-level production and distribution planning problems," European Journal of Operational Research, Elsevier, vol. 300(1), pages 255-268.
    10. Sakawa, Masatoshi & Nishizaki, Ichiro & Hitaka, Masatoshi, 1999. "Interactive fuzzy programming for multi-level 0-1 programming problems through genetic algorithms," European Journal of Operational Research, Elsevier, vol. 114(3), pages 580-588, May.
    11. Ashenafi Woldemariam & Semu Kassa, 2015. "Systematic evolutionary algorithm for general multilevel Stackelberg problems with bounded decision variables (SEAMSP)," Annals of Operations Research, Springer, vol. 229(1), pages 771-790, June.
    12. Mathur, Kanchan & Puri, M. C., 1995. "A bilevel bottleneck programming problem," European Journal of Operational Research, Elsevier, vol. 86(2), pages 337-344, October.
    13. Vuciterna, Rina & Thomsen, Michael & Popp, Jennie & Musliu, Arben, 2017. "Efficiency and Competitiveness of Kosovo Raspberry Producers," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252770, Southern Agricultural Economics Association.
    14. Collan, Mikael, 2008. "New Method for Real Option Valuation Using Fuzzy Numbers," Working Papers 466, IAMSR, Åbo Akademi.
    15. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    16. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    17. Mikhailov, L., 2004. "A fuzzy approach to deriving priorities from interval pairwise comparison judgements," European Journal of Operational Research, Elsevier, vol. 159(3), pages 687-704, December.
    18. Hongyi Sun & Bingqian Zhang & Wenbin Ni, 2022. "A Hybrid Model Based on SEM and Fuzzy TOPSIS for Supplier Selection," Mathematics, MDPI, vol. 10(19), pages 1-19, September.
    19. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    20. Sakawa, Masatoshi & Kato, Kosuke, 1998. "An interactive fuzzy satisficing method for structured multiobjective linear fractional programs with fuzzy numbers," European Journal of Operational Research, Elsevier, vol. 107(3), pages 575-589, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:135:y:2001:i:1:p:142-157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.