IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v103y1997i2p350-372.html
   My bibliography  Save this article

Supporting a complex audit judgment task: An expert network approach

Author

Listed:
  • Davis, Jefferson T.
  • Massey, Anne P.
  • Lovell, Ronald E. R.

Abstract

No abstract is available for this item.

Suggested Citation

  • Davis, Jefferson T. & Massey, Anne P. & Lovell, Ronald E. R., 1997. "Supporting a complex audit judgment task: An expert network approach," European Journal of Operational Research, Elsevier, vol. 103(2), pages 350-372, December.
  • Handle: RePEc:eee:ejores:v:103:y:1997:i:2:p:350-372
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(97)00125-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Uma G. Gupta, 1994. "How Case-Based Reasoning Solves New Problems," Interfaces, INFORMS, vol. 24(6), pages 110-119, December.
    2. Barry G. Silverman, 1995. "Knowledge-Based Systems and the Decision Sciences," Interfaces, INFORMS, vol. 25(6), pages 67-82, December.
    3. Matthew J. Liberatore & Anthony C. Stylianou, 1995. "Expert Support Systems for New Product Development Decision Making: A Modeling Framework and Applications," Management Science, INFORMS, vol. 41(8), pages 1296-1316, August.
    4. Kar Yan Tam & Melody Y. Kiang, 1992. "Managerial Applications of Neural Networks: The Case of Bank Failure Predictions," Management Science, INFORMS, vol. 38(7), pages 926-947, July.
    5. Lacher, R. C. & Coats, Pamela K. & Sharma, Shanker C. & Fant, L. Franklin, 1995. "A neural network for classifying the financial health of a firm," European Journal of Operational Research, Elsevier, vol. 85(1), pages 53-65, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amani, Farzaneh A. & Fadlalla, Adam M., 2017. "Data mining applications in accounting: A review of the literature and organizing framework," International Journal of Accounting Information Systems, Elsevier, vol. 24(C), pages 32-58.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bose, Indranil & Pal, Raktim, 2006. "Predicting the survival or failure of click-and-mortar corporations: A knowledge discovery approach," European Journal of Operational Research, Elsevier, vol. 174(2), pages 959-982, October.
    2. Haider A. Khan, 2002. "Can Banks Learn to Be Rational?," CIRJE F-Series CIRJE-F-151, CIRJE, Faculty of Economics, University of Tokyo.
    3. Zhang, Guoqiang & Y. Hu, Michael & Eddy Patuwo, B. & C. Indro, Daniel, 1999. "Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis," European Journal of Operational Research, Elsevier, vol. 116(1), pages 16-32, July.
    4. du Jardin, Philippe, 2008. "Bankruptcy prediction and neural networks: The contribution of variable selection methods," MPRA Paper 44384, University Library of Munich, Germany.
    5. Francesco Ciampi & Valentina Cillo & Fabio Fiano, 2020. "Combining Kohonen maps and prior payment behavior for small enterprise default prediction," Small Business Economics, Springer, vol. 54(4), pages 1007-1039, April.
    6. du Jardin, Philippe & Séverin, Eric, 2012. "Forecasting financial failure using a Kohonen map: A comparative study to improve model stability over time," European Journal of Operational Research, Elsevier, vol. 221(2), pages 378-396.
    7. Mselmi, Nada & Lahiani, Amine & Hamza, Taher, 2017. "Financial distress prediction: The case of French small and medium-sized firms," International Review of Financial Analysis, Elsevier, vol. 50(C), pages 67-80.
    8. Malhotra, Rashmi & Malhotra, D. K., 2002. "Differentiating between good credits and bad credits using neuro-fuzzy systems," European Journal of Operational Research, Elsevier, vol. 136(1), pages 190-211, January.
    9. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    10. du Jardin, Philippe & Séverin, Eric, 2011. "Predicting corporate bankruptcy using a self-organizing map: An empirical study to improve the forecasting horizon of a financial failure model," MPRA Paper 44262, University Library of Munich, Germany.
    11. du Jardin, Philippe, 2010. "Predicting bankruptcy using neural networks and other classification methods: the influence of variable selection techniques on model accuracy," MPRA Paper 44375, University Library of Munich, Germany.
    12. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    13. Montagno, Ray & Sexton, Randall S. & Smith, Brien N., 2002. "Using neural networks for identifying organizational improvement strategies," European Journal of Operational Research, Elsevier, vol. 142(2), pages 382-395, October.
    14. Amélia Ferreira da Silva & José Henrique Brito & Mariline Lourenço & José Manuel Pereira, 2023. "Sustainability of Transport Sector Companies: Bankruptcy Prediction Based on Artificial Intelligence," Sustainability, MDPI, vol. 15(23), pages 1-13, December.
    15. Malhotra, Rashmi & Malhotra, D. K., 2003. "Evaluating consumer loans using neural networks," Omega, Elsevier, vol. 31(2), pages 83-96, April.
    16. Davalos, Sergio & Gritta, Richard D. & Adrangi, Bahram, 2007. "Deriving Rules for Forecasting Air Carrier Financial Stress and Insolvency: A Genetic Algorithm Approach," Journal of the Transportation Research Forum, Transportation Research Forum, vol. 46(2).
    17. Kim, Soo Y. & Upneja, Arun, 2014. "Predicting restaurant financial distress using decision tree and AdaBoosted decision tree models," Economic Modelling, Elsevier, vol. 36(C), pages 354-362.
    18. Palocsay, Susan W. & Stevens, Scott P. & Brookshire, Robert G. & Sacco, William J. & Copes, Wayne S. & Buckman, Robert F. & Smith, J. Stanley, 1996. "Using neural networks for trauma outcome evaluation," European Journal of Operational Research, Elsevier, vol. 93(2), pages 369-386, September.
    19. Yu-Shan Chen & Ke-Chiun Chang, 2009. "Using neural network to analyze the influence of the patent performance upon the market value of the US pharmaceutical companies," Scientometrics, Springer;Akadémiai Kiadó, vol. 80(3), pages 637-655, September.
    20. Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:103:y:1997:i:2:p:350-372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.